Lecture 7

Stochastic MPC III
Course outline

1. Classical (nominal) MPC:
 ▶ Dual mode prediction paradigm, recursive feasibility and stability
 ▶ Constraint handling, controller dynamics, computation and implementation

2. Robust MPC
 ▶ Additive model uncertainty – tube MPC; open loop and closed loop prediction strategies.
 ▶ Parametric model uncertainty – controller dynamics, recursive state bounding, polytopic tubes.

3. Stochastic MPC
 ▶ Probabilistic constraints, recursive feasibility, stability and convergence.
 ▶ Parametric uncertainty, state decomposition, output feedback
 ▶ Sample-based methods; polytopic tubes revisited

4. Online dynamic programming
 ▶ Active set method for additive model uncertainty; H_∞ cost
 ▶ Parametric uncertainty; controllable set computation

Reading

Sample approximations of chance-constrained programs:
Confidence bounds and clustering

Optimization with probabilistic constraints

Consider optimization problems involving random variables that must satisfy constraints with a specified minimum probability

Probabilistic (or chance) constraints allow better optimality and greater parametric uncertainty than robust constraints

Applications are numerous and diverse:
... finance, portfolio management, production planning, supply chain management, sustainable development, chemical process design, telecommunications networks, building control...

Stochastic Programming methods have been developed since the 1950's e.g. Charnes & Cooper, Management Sci., 1959 but exact handling of probabilistic constraints remains mostly intractable
Define the chance constrained problem

\[
\text{(CCP)}: \quad \begin{array}{l}
\text{minimize} \quad f(x) \\
\text{subject to} \quad \mathbb{P}\{\delta \in \Delta : g(x, \delta) \leq 0\} \geq p.
\end{array}
\]

for scalar functions \(f, g\), and compact domain \(\mathcal{D}\)

\(\mathbb{P}\{S\} = \text{probability that a realization of the random variable} \ \delta \in \Delta \ \text{lies in} \ S\)

Assume:

\begin{itemize}
\item \(g(x, \delta)\) is upper semicontinuous in \(x \in \mathcal{D}\) for each \(\delta \in \Delta\)
\item \(g(x, \delta)\) is lower semicontinuous in \(\delta \in \Delta\) for each \(x \in \mathcal{D}\)
\item \(\text{(CCP)}\) is feasible
\end{itemize}

i.e. \(\mathbb{P}\{\delta \in \Delta : g(x, \delta) \leq 0\} \geq p\) for some \(x \in \mathcal{D}\).

Optimization with probabilistic constraints

Two major difficulties with optimization subject to probabilistic constraints:

1. Prohibitive computation to determine feasibility of given \(x\)

\[
\mathbb{P}\{\delta \in \Delta : g(x, \delta) \leq 0\} = \int_{\delta \in \Delta} \mathbb{1}_{\{g(x, \delta) \leq 0\}}(\delta) \ p(\delta) \ d\delta
\]

- Closed form expression only available in special cases, e.g.
 \[
\begin{align*}
\delta &\in \mathcal{N}(0, I) \\
g(x, \delta) &= c^T \delta - 1 + (d + D^T \delta) \ T \ x
\end{align*}
\]
 Gaussian uncertainty
 jointly affine
gives

\[
\mathbb{P}\{\delta \in \Delta : g(x, \delta) \leq 0\} \geq p \iff d^T x - 1 \geq \Phi^{-1}(p) \|c + Dx\|_2
\]

- In general multidimensional integration is needed
 e.g. using Monte Carlo methods
Optimization with probabilistic constraints

Two major difficulties with optimization subject to probabilistic constraints:

2. The feasible set \mathcal{F} may be nonconvex even if $g(x, \delta)$ is convex in x

\[e.g. \ d^T x - 1 \geq \Phi^{-1}(p) \| c + D x \|_2 \text{ is convex if } p \geq 0.5 \]
\[\text{nonconvex if } p < 0.5 \]

\[F_{p > 0.5} \]
\[F_{p < 0.5} \]

Sample approximation

A sample of N independent and identically distributed realizations of δ

\[\omega := \{ \delta^{(1)}, \delta^{(2)}, \ldots, \delta^{(N)} \} \]

allows an approximation

\[\mathbb{P}\{ \delta \in \Delta : g(x, \delta) \leq 0 \} = \int_{\delta \in \Delta} \mathbb{1}_{\{ g(x, \delta) \leq 0 \}}(\delta) \ p(\delta) \ d\delta \]
\[\approx \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}_{\{ g(x, \delta) \leq 0 \}}(\delta^{(j)}) \]

* This approximation is relatively easy to evaluate

* The approximation error is a random variable since ω is a random variable but it is likely to decrease as N increases
Sample approximation

The sample-counterpart of (CCP) is

\[\text{(SP)} : \min_{x \in \mathcal{D}} f(x) \]

s.t. \(g(x, \delta^{(j)}) \leq 0 \) for all \(j \in \mathcal{I} \subseteq \{1, \ldots, N\} \)

\(|\mathcal{I}| \geq q\)

for some chosen \(q \), with \(n_x \leq q \leq N \)

Assume:

- The sample \(\{\delta^{(1)}, \delta^{(2)}, \ldots, \delta^{(N)}\} \) independent and identically distributed according to \(\mathbb{P} \)

- (SP) is feasible

 i.e. \(g(x, \delta^{(j)}) \leq 0 \) for all \(j \in \mathcal{I} \), with \(|\mathcal{I}| \geq q \), for some \(x \in \mathcal{D} \)

 (otherwise consider all probabilities to be conditional on feasibility of (SP))

Sample approximation

Solutions of (SP) converge to the solution of (CCP) as \(N \to \infty \) if \(q(N) \to pN \)

but computation depends heavily on \(N \),

so we need to know how approximation accuracy depends on \(N \)

Approximation accuracy can be characterized in terms of bounds on:

- the probability that a solution of (SP) is feasible for (CCP), and

- the probability that the optimal value of (SP) exceeds that of (CCP)

Calafiore, *SIAM J. Optim.*, 2010

Sample approximation

Values of N such that a solution of (SP) is feasible for (CCP) with a confidence of $1 - 10^{-10}$ (for $p = 0.9$, $n_x = 5$)

Campi & Garatti, 2011

For real time control with sample rate > 0.1 Hz, require $N \lesssim 500$

Sample approximation

Using the confidence bounds derived in Campi & Garatti, 2011:

For $N = 500$, $q = 375$: (SP) solves (CCP) with $p = 0.65$ with confidence $F > 1 - 10^{-4}$

but $p_{0.95} - p_{0.05} = 0.125$ suggests a significant degree of conservativeness
Analysis of sample approximation accuracy

Earlier work considered the feasible set for \((SP)\) as the intersection of \(q\) sets
\[
\mathcal{F}_x(\delta^{(j)}) := \{x : g(x, \delta^{(j)}) \leq 0\}
\]

New approach

(i). For given \(x\):

* consider the set
\[
\mathcal{F}_\delta(x) := \{\delta \in \Delta : g(x, \delta) \leq 0\}
\]
* Identify \(S(x) \subset \Delta\), such that
\[
\mathbb{P}\{S(x)\} = p \quad \text{and} \quad S(x) \subseteq \mathcal{F}_\delta(x) \quad \text{or} \quad \mathcal{F}_\delta(x) \subset S(x)
\]

(ii). Considering \(x\) as a random variable, bound the probability that
\[
S(x) \subseteq \mathcal{F}_\delta(x)
\]
Level set analysis

Define \(S_\alpha(x) \subseteq \Delta \), for given \(x \in D \) and \(\alpha \in \mathbb{R} \), as the sublevel set

\[
S_\alpha(x) := \{ \delta \in \Delta : g(x, \delta) \leq \alpha \}
\]

then \(F_\delta(x) = S_0(x) \), and

\[
\begin{aligned}
&\star S_\alpha(x) \subseteq S_0(x) \text{ if and only if } \alpha < 0 \\
&\star S_\alpha(x) \supseteq S_0(x) \text{ if and only if } \alpha \geq 0
\end{aligned}
\]

follows from \(g(x, \delta) \) lower semicontinuous in \(\delta \in \Delta \)

Define the function \(\alpha_p : D \to \mathbb{R} \) for given \(p \in (0, 1] \) as

\[
\alpha_p(x) := \min_\alpha \text{ s.t. } \mathbb{P}\{S_\alpha(x)\} \geq p
\]

to simplify notation we use \(S_{\alpha_p}(x) \) to denote \(S_{\alpha_p}(x)(x) \)

Level set analysis

Proposition \(\alpha_p(x) \) is finite for all \(x \in D \)

Proof: \(\alpha_p(x) = \min_\alpha \{ \alpha \text{ s.t. } \mathbb{P}\{S_\alpha(x)\} \geq p \} \) implies lower and upper bounds:

\[
\begin{aligned}
&\downarrow \alpha_p(x) \geq \max_\delta \in S_{\alpha_p} g(x, \delta) \\
&\text{but } p > 0 \Rightarrow S_{\alpha_p} \cap S' \neq \emptyset \text{ for some compact set } S' \subseteq \Delta \text{ so}
\end{aligned}
\]

\[
S_{\alpha_p} \cap S' \neq \emptyset \Rightarrow \alpha_p(x) \geq \max_\delta \in S_{\alpha_p} g(x, \delta) \geq \min_\delta \in S' g(x, \delta) > -\infty
\]

(since \(g(x, \delta) \) is lower-semicontinuous in \(\delta \))

\[
\downarrow \text{ Feasibility of (CCP) implies } \mathbb{P}\{S_0(x_0)\} \geq p \text{ for some } x_0 \in D
\]

also \(g(x, \delta) \) is finite \(\forall (x, \delta) \in D \times S_0(x_0) \) hence

\[
\mathbb{P}\{S_0(x_0)\} \geq p \quad \Rightarrow \quad \alpha_p(x) \leq \max_{\delta \in S_0(x_0)} g(x, \delta) < +\infty
\]

(since \(D \) is compact and \(g(x, \delta) \) upper-semicontinuous in \(x \))
Level set analysis

If x is feasible for (SP), then
\[\delta(j) \in S_0(x) \quad \text{for all } j \in \mathcal{I} \subseteq \{1, \ldots, N\}, \ |\mathcal{I}| \geq q \]
\[\delta(j) \notin S_0(x) \quad \text{for all } j \in \{1, \ldots, N\} \setminus \mathcal{I} \]

Define $\bar{\mathcal{I}}$:
\[\delta(j) \in \partial S_0(x) \quad \text{for all } j \in \bar{\mathcal{I}} \subseteq \mathcal{I} \]
\[\delta(j) \in \text{int}(S_0(x)) \quad \text{for all } j \in \mathcal{I} \setminus \bar{\mathcal{I}} \]

Define \mathcal{I}_p:
\[\delta(j) \in S_{\alpha_p}(x) \quad \text{for all } j \in \mathcal{I}_p \subseteq \{1, \ldots, N\} \]
\[\delta(j) \notin S_{\alpha_p}(x) \quad \text{for all } j \in \{1, \ldots, N\} \setminus \mathcal{I}_p \]

7 - 17

Level set analysis

The number of indices in \mathcal{I}_p determines whether α_p is positive or negative

Proposition For given $x \in \mathcal{D}$ and $p \in (0, 1]$

\[S_{\alpha_p}(x) \subset S_0(x) \iff \alpha_p(x) < 0 \quad \text{iff } |\mathcal{I}_p| \leq |\mathcal{I}| - |\bar{\mathcal{I}}| \quad (A) \]
\[S_{\alpha_p}(x) \supseteq S_0(x) \iff \alpha_p(x) \geq 0 \quad \text{iff } |\mathcal{I}_p| \geq |\mathcal{I}| \quad (B) \]
\[S_{\alpha_p}(x) \subset S_0(x) \iff \alpha_p(x) < 0 \quad \text{if } |\mathcal{I}_p| \leq q - |\bar{\mathcal{I}}| \quad (C) \]

Proof: Follows from
\begin{itemize}
 \item for all $x \in \mathcal{D}$, either $S_{\alpha_p}(x) \subset S_0(x)$ or $S_{\alpha_p}(x) \supseteq S_0(x)$
 \item \mathcal{I}, $\bar{\mathcal{I}}$ and \mathcal{I}_p are subsets of $\{1, \ldots, N\}$
\end{itemize}
Level set analysis

The number of indices in I_p determines whether α_p is positive or negative

Proposition For given $x \in \mathcal{D}$ and $p \in (0, 1]$

1. $S_{\alpha_p}(x) \subset S_0(x) \iff \alpha_p(x) < 0$ iff $|I_p| \leq |I| - |\bar{I}|$ (A)
2. $S_{\alpha_p}(x) \supseteq S_0(x) \iff \alpha_p(x) \geq 0$ iff $|I_p| \geq |I|$ (B)
3. $S_{\alpha_p}(x) \subset S_0(x) \iff \alpha_p(x) < 0$ if $|I_p| \leq q - |\bar{I}|$ (C)

Proof:

(A): $\exists \delta^{(j)} \in S_{\alpha_p}(x) \setminus S_0(x)$

\[|I_p| \leq |I| - |\bar{I}| \]

(B): $\forall \delta^{(j)} \in S_0(x)$, $\delta^{(j)} \in S_{\alpha_p}(x)$

\[|I_p| \geq |I| \]

Confidence bounds on approximation accuracy

The solution x of (SP) depends on

$\omega = \{\delta^{(1)}, \delta^{(2)}, \ldots, \delta^{(N)}\} \in \Delta^N$

which is a random variable with probability measure \mathbb{P}^N

Hence use \mathbb{P}^N to bound the probabilities of (A), (B), (C)

Assume:

(a). The solution of (SP) is unique or criteria are available to select between solutions achieving the same optimal cost

(b). $|\bar{I}| \leq r \leq n_x$ for all $\omega \in \Delta^N$

Here (b) is equivalent to the assumption that there are no weakly active constraints at the solution of (SP)

(note that weakly active constraints occur on a set of zero measure in Δ^N)
Confidence bounds on approximation accuracy

Let $F_{N,n}(p)$ denote the binomial distribution function:

$$F_{N,n}(p) := \sum_{i=0}^{n} \binom{N}{i} p^i (1-p)^{N-i}$$

$F_{N,n}(p)$ is the probability of n or fewer successes in N independent trials, each with probability p of success.

Therefore the probability of n or fewer samples $\delta^{(j)} \in \omega$ lying in a set of measure p is

$$\mathbb{P}^N\{|I_p| \leq n\} = F_{N,n}(p)$$

Confidence bounds on approximation accuracy

Theorem The solution x of (SP) satisfies

$$\mathbb{P}^N\{\mathbb{P}\{S_0(x)\} > p\} \geq F_{N,q-r}(p)$$

and, for $|I| = q$,

$$\mathbb{P}^N\{\mathbb{P}\{S_0(x)\} > p\} \leq F_{N,q-1}(p)$$

Proof:

- $S_{\alpha_p}(x) \subset S_0(x)$ if $|I_p| \leq q - r$, so

$$\mathbb{P}^N\{\mathbb{P}\{S_0(x)\} > p\} \geq \mathbb{P}^N\{|I_p| \leq q - r\} = F_{N,q-r}(p)$$

- if $|I| = q$, then $|I_p| < q$ whenever $S_{\alpha_p}(x) \subset S_0(x)$, so

$$\mathbb{P}^N\{\mathbb{P}\{S_0(x)\} > p\} \leq \mathbb{P}^N\{|I_p| < q\} = F_{N,q-1}(p)$$
Confidence bounds on approximation accuracy

Corollary If the solution x of (SP) satisfies $|\mathcal{I}| = q$ and $|\tilde{\mathcal{I}}| = r$, then

$$\mathbb{P}^N\{\mathbb{P}\{\mathcal{S}_0(x)\} > p\} = F_{N,q-r}(p)$$

Proof: In this case $\mathcal{S}_{\alpha_p}(x) \subset \mathcal{S}_0(x)$ iff $|\mathcal{I}_p| \leq q - r$

Note: this applies to problems (SP) for which the number of support constraints is r for all $\omega \in \Delta^N$

c.f. fully supported problems with $r = n_x$

Campi & Garatti, 2010

Confidence bounds on approximation accuracy

Consider the relationship between optimal costs: $J^*(p)$ of (CCP) and $J^*_{N,q}(\omega)$ of (SP)

Corollary

$$\mathbb{P}^N\{\omega \in \Delta^N : J^*_{N,q}(\omega) \geq J^*(p)\} \geq F_{N,q-r}(p)$$

Proof: $J^*_{N,q}(\omega) \geq J^*(p)$ if the solution x of (SP) is feasible for (CCP), so

$$\mathbb{P}^N\{\omega \in \Delta^N : J^*_{N,q}(\omega) \geq J^*(p)\} \geq \mathbb{P}^N\{\mathbb{P}\{\mathcal{S}_0(x)\} > p\}$$

Corollary

$$\mathbb{P}^N\{\omega \in \Delta^N : J^*_{N,q}(\omega) \leq J^*(p)\} \leq F_{N,q-1}(p)$$

Proof: $J^*_{N,q}(\omega) \leq J^*(p)$ if the solution \hat{x} of (CCP) is feasible for (SP) i.e. if $\mathcal{S}_0(\hat{x})$ contains q or more samples $\delta^{(j)}$

so

$$\mathbb{P}^N\{\omega \in \Delta^N : J^*_{N,q}(\omega) \leq J^*(p)\} \geq 1 - F_{N,q-1}(p)$$
Confidence bounds on approximation accuracy

Comparison with previous results:

- Calafiore (2010) and Campi & Garatti (2011) give confidence bounds:
 \[\mathbb{P}^N \{ \omega \in \Delta^N : \mathbb{P} \{ S_0(x(\omega)) \} > p \} \geq \tilde{F}_{N,q,r}(p) \]
 \[\mathbb{P}^N \{ \omega \in \Delta^N : J^*_N,q(\omega) \geq J^*(p) \} \geq \tilde{F}_{N,q,r}(p) \]

 where \(\tilde{F}_{N,q,r}(p) := \max \left\{ 0, 1 - \left(\frac{N-q+r-1}{N-q} \right) (1 - F_{N,q-r}(p)) \right\} \)

 These are more conservative since for any given \(N, q \) and \(r \):
 \[F_{N,q-r}(p) \geq \tilde{F}_{N,q,r}(p) \quad \text{for all } p \in (0, 1] \]
 with equality only if \(r = 1 \)

- Calafiore (2010) and Campi & Garatti (2011) assume
 * \(g(x, \delta) \) is lower-semi continuous in \(x \in \mathcal{D} \) for each \(\delta \in \Delta \)
 * \(f, g \) are convex in \(x \)

 Calafiore (2010) also considers the case that (SP) is infeasible

Confidence bounds on approximation accuracy - example

Confidence bounds \(F_{N,q-1}(p), F_{N,q-r}(p) \) and \(\tilde{F}_{N,q,r}(p) \)
for \(N = 500 \) samples with \(q = \lceil 0.75N \rceil = 375 \) and \(r = 3 \)

![Graph showing confidence bounds](image-url)
Confidence bounds on approximation accuracy - example

Values of p lying on 5% and 95% confidence bounds for varying N with $q = [0.75N]$, $r = 3$

![Graph showing confidence bounds for p vs N]

(a). convergence:

$$p_{u,5} - p_{l,95} \sim O(N^{-0.5})$$

consistent with Central Limit Theorem

(b). $p_{u,5} - \tilde{p}_{l,95} \approx 2(p_{u,5} - p_{l,95})$

for $N \geq 500$

(a) & (b) imply ≈ 4 times larger N is needed for same confidence when \tilde{F} used instead of F
MIP implementation

Represent (SP) as a Mixed Integer Program (MIP)

\[
\text{(SP-B)}: \quad \min_{x \in \mathcal{D}} f(x) \quad \text{s.t.} \quad g(x, \delta^{(j)}) \leq (1 - b^{(j)})M \\
\quad \quad \quad \quad \quad \quad b^{(j)} \in \{0, 1\}, \quad j = 1, \ldots, N \\
\quad \quad \quad \quad \quad \quad \sum_{j=1}^{N} b^{(j)} \geq q
\]

for some scalar \(M \gg 1 \)

• If \(g(x, \delta^{(j)}) \leq M \) for all \(x \in \mathcal{D} \) and all \(j \)
 then (SP-B) is equivalent to (SP)

• Number of possible values for the set of binary variables \(\{b^{(1)}, \ldots, b^{(N)}\} \) increases exponentially with \(N \)
 hence computation (e.g. branch & bound) depends exponentially on sample size \(N \)

Sample clustering

Reduce computational load of (SP) by pre-processing the sample set \(\omega \), using e.g. k-means clustering

Approach is devised for a sequence of parameterized problems with

\[
\begin{align*}
\text{objective} & \quad f(x; y_t) \\
\text{constraint functions:} & \quad g(x, \delta; y_t) \quad \text{for } t = 0, 1, \ldots
\end{align*}
\]

where the parameter \(y_t \) becomes known at time \(t \)

e.g. in Stochastic MPC:

• \(y_t \) is the state of the controlled system at time \(t \)

• pre-processing is performed offline to speed up online optimization at \(t = 0, 1, \ldots \)
Sample clustering

Clustering reduces the number of binary variables while preserving information on the distribution characterized by ω.

Define N_c clusters: $\mathcal{I}^{(k)} \subseteq \{1, \ldots, N\}$, $k = 1, \ldots, N_c$, with

$$\bigcup_{k=1}^{N_c} \mathcal{I}^{(k)} = \{1, \ldots, N\} \text{ and } \mathcal{I}^{(k)} \cap \mathcal{I}^{(l)} = \emptyset \text{ for all } k \neq l$$

Reformulate (SP-B) as

(SP-C): \[\min_{x \in \mathcal{D}} f(x) \text{ s.t. } g(x, \delta^{(j)}) \leq (1 - b^{(k)})M \text{ for all } j \in \mathcal{I}^{(k)}, \]

\[b^{(k)} \in \{0, 1\}, \ k = 1, \ldots, N_c \]

\[\sum_{k=1}^{N_c} b^{(k)}|\mathcal{I}^{(k)}| \geq q \]

- Various clustering algorithms available (e.g. k-means)
- All samples in a cluster are activated simultaneously, so (SP-C) has $N_c < N$ binary var.s but same number of inequality constraints as (SP-B)

Sample clustering

Let $x(\omega)$ denote a solution of (SP-C)

then:

- x is feasible for (CCP) with probability at least $\mathcal{F}_{N,q-r}(p)$
- x is feasible for (SP-C) with probability no greater than $\mathcal{F}_{N,q-r}(p)$ if $|\mathcal{I}| = q$, $\mathcal{I} = \{j \in \{1, \ldots, N\} : g(x, \delta^{(j)}) \leq 0\}$

Let $J_{N,q,N_c}(\omega)$ denote the optimal objective of (SP-C)

then:

- $\mathbb{P}^N \{ \omega \in \Delta^N : J_{N,q,N_c}(\omega) \geq J^*(p) \} \geq F_{N,q-r}(p)$
- $\mathbb{P}^N \{ \omega \in \Delta^N : J_{N,q,N_c}(\omega) \geq J^*(p) \} \leq F_{N,q-1}(p)$

Hence (SP-C) has the same confidence bounds as (SP)
Example

Linear objective function: \(f(x) = f^T x, \quad f^T = [-0.90, -0.56, 0.517] \)

Piecewise linear constraint function:
\[
g(x, \delta) = \max_i c_i^T \delta + (d_i + D_i \delta)^T x - 1
\]
\[
c_1 = \begin{bmatrix} -0.33 \\ -0.68 \end{bmatrix}, \quad d_1 = \begin{bmatrix} -0.20 \\ -0.39 \\ 0.04 \end{bmatrix}, \quad D_1 = \begin{bmatrix} 0.35 & 0.25 \\ 0.90 & -0.65 \\ 0.89 & -0.83 \end{bmatrix}
\]
\[
c_2 = \begin{bmatrix} 0.88 \\ 0.74 \end{bmatrix}, \quad d_2 = \begin{bmatrix} -0.65 \\ 0.51 \\ -0.30 \end{bmatrix}, \quad D_2 = \begin{bmatrix} -0.58 & 0.72 \\ -0.43 & -0.59 \\ -0.32 & 0.28 \end{bmatrix}
\]
\[
c_3 = \begin{bmatrix} -0.75 \\ 0.68 \end{bmatrix}, \quad d_3 = \begin{bmatrix} -0.84 \\ 0.55 \\ -0.77 \end{bmatrix}, \quad D_3 = \begin{bmatrix} -0.68 & -0.05 \\ 0.81 & 0.41 \\ 0.58 & -0.22 \end{bmatrix}
\]
\[
c_4 = \begin{bmatrix} -0.19 \\ -0.93 \end{bmatrix}, \quad d_4 = \begin{bmatrix} -0.61 \\ -0.94 \\ 0.57 \end{bmatrix}, \quad D_4 = \begin{bmatrix} -0.76 & 0.74 \\ 0.68 & 0.52 \\ 0.99 & 0.46 \end{bmatrix}
\]

Gaussian uncertainty: \(\delta \sim \mathcal{N} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1.21 & -0.24 \\ -0.24 & 0.75 \end{bmatrix} \right) \)

Domain: \(D = \{ x \in \mathbb{R}^3 : \| x \|_{\infty} \leq 10^3 \} \)

Confidence bounds and observed distribution of \(\mathbb{P}\{ S_0(x) > p \} \), computed by:
(a). solving (SP-B) \(10^3 \) times as a MIP
(b). using \(10^5 \) samples to compute \(\mathbb{P}\{ S_0(x) \} \) empirically for each solution \(x \)

Example: Confidence bounds

For this example \(|\hat{I}| = n_x = 3 \) for all \(\omega \)
so the observed distributions of \(\mathbb{P}\{ S_0(x) \} > p \) lie approximately on \(F_{N,q-3}(p) \)
Example: Effect of clustering on computational load

Comparison of computational load with and without clustering –
average execution times (using Gurobi, 2.3 GHz i7 quad core processor):

<table>
<thead>
<tr>
<th>$N (N_c)$</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>200 (100)</th>
<th>500 (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (s)</td>
<td>0.37</td>
<td>1.38</td>
<td>30.0</td>
<td>0.73</td>
<td>1.49</td>
</tr>
</tbody>
</table>

- Computation for $N = 200, 500$ and $N_c = 100$ is comparable to $N = 100$, but (slightly) higher due to greater number of inequality constraints
- For $N = 500$ and no clusters, the solver terminated before converging to the optimum in almost all cases

Example: Confidence bounds with clustering

Observed distributions of $\mathbb{P}\{S_0(x)\} > p$ with $N_c = 100$ clusters for $N = 500$, the upper confidence bound is exceeded because $|T| > q$
Typical distribution of samples and clusters

Solid lines: boundaries of $S_0(x)$ for $N = 500$, $N_c = 0$
Dashed lines: boundaries of $S_0(x)$ for $N = 500$, $N_c = 100$
Consider LPV systems with polytopic multiplicative uncertainty

$$x_{k+1} = A_k x_k + B_k u_k, \quad (A_k, B_k) \in \Theta, \quad k = 0, 1, \ldots$$

where the probability distribution of (A_k, B_k) is known and

$$\Theta := \text{Co}\{(A^{(j)}, B^{(j)}), \quad j = 1, \ldots, p\}$$

The aim is to minimizes a multistage cost

$$J(x_0, u) = \sum_{k=0}^{\infty} L(x_k, u_k)$$

where $J(x_0, u)$ is positive definite in x_0 and u

e.g. an expected value (or nominal) quadratic cost

subject to hard constraints and probabilistic constraints:

$$F_h x_k + G_h u_k \leq 1 \quad k = 0, 1, \ldots$$
$$\Pr_{x_k}(F_s x_{k+1} + G_s u_{k+1} \leq 1) \geq p \quad k = 0, 1, \ldots$$

Let $x_{i|k}$, $u_{i|k}$ be the predicted values at time k of x_{k+i}, u_{k+i}

The input sequence $\{u_{0|k}, u_{1|k}, \ldots\}$ predicted at time k is parameterized as

$$u_{i|k} = K x_{i|k} + c_{i|k}$$

where $u = K x$ is stabilizing in the absence of constraints and

$$c_k = \{c_{0|k}, \ldots, c_{N-1|k}\} \text{ are decision variables at time } k$$
$$c_{i|k} = 0 \text{ for all } i \geq N$$

for a given horizon N

The predicted state sequence $\{x_{0|k}, x_{1|k}, \ldots\}$ evolves as

$$x_{i+1|k} = \Phi_k x_{i|k} + B_k c_{i|k}$$

for $\Phi_k = A_k + B_k K \in \text{Co}\{\Phi^{(j)}, \quad j = 1, \ldots, p\}$,
$$\Phi^{(j)} = A^{(j)} + B^{(j)} K$$
Stochastic MPC

Model uncertainty is handled by determining a tube \(\{ X_{i|k}, i = 0, 1, \ldots \} \) such that \(x_{i|k} \in X_{i|k} \) for all \(i \), for all realizations of model uncertainty.

Multiplicative uncertainty implies \(u_{i|k} \) affects the influence of uncertainty on predicted states \(x_{l|k}, l > i \)

\(\Rightarrow \) linearity cannot be used to define uncertainty tubes independently of \(\{ u_{i|k}, i = 0, 1 \ldots \} \)

The complexity of exact tubes grows rapidly with horizon hence need to consider tubes with fixed complexity e.g. polytopic tubes \(\{ X_{i|k}, i = 0, 1, \ldots \} \), where \(X_{i|k} \) has a fixed maximum number of facets/vertices

Polytopic tubes

Define the tube cross section \(X_{i|k} = \{ x : Vx \leq \alpha_{i|k} \} \) for fixed \(V \in \mathbb{R}^{n_V \times n_x} \), variable \(\alpha_{i|k}, i = 0, 1, \ldots \)

\(X_{i|k} \) is the intersection of \(n_V \) half-spaces:

\[
X_{i|k} = \bigcap_{i=1}^{n_V} \{ x : V_j x \leq (\alpha_{i|k})_j \} \\
= \{ x : Vx \leq \alpha_{i|k} \}
\]
Polytopic tubes

Assume:

(i). The system $x_{k+1} = \Phi_k x_k$, $\Phi \in \text{Co}\{\Phi^{(j)} \mid j = 1, \ldots, p\}$ is stable with joint spectral radius $\lambda^* < 1$

$$\lambda^* := \limsup_{n \to \infty} \max_{\{\Phi_1, \ldots, \Phi_n\} \in \text{Co}\{\Phi^{(j)} \mid j = 1, \ldots, p\} \times \cdots \times \text{Co}\{\Phi^{(j)}\}} \|\Phi_1 \cdots \Phi_n\|^{1/n}$$

(ii). V is chosen so that $S := \{x : Vx \leq 1\}$ is λ-contractive:

$$\Phi^{(j)} S \subseteq \lambda S, \ j = 1, \ldots, p$$

for some $\lambda \in [\lambda^*, 1)$

λ-contractivity of S is ensured if S is computed as a positively invariant set for the dynamics $x_{k+1} = \frac{1}{\lambda} \Phi x_k$, $\Phi \in \text{Co}\{\Phi^{(j)} \mid j = 1, \ldots, p\}$

Polytopic tubes

To ensure that the constraints:

1. $F_h x_{i|k} + G_h u_{i|k} \leq 1$
2. $\Pr(F_s x_{i+1|k} + G_s u_{i+1|k} \leq 1) \geq p$

are satisfied at prediction times $i = 0, 1, \ldots$, we impose the constraints:

1. $X_{i|k} \subseteq \{x : \Phi^{(j)} x + B^{(j)} c_{i|k} \in X_{i+1|k}\}$
 $x_0 \subseteq X_0|k$
2. $X_{i|k} \subseteq \{x : \tilde{F}_h x + G_h c_{i|k} \leq 1\}$
 $X_{i|k} \subseteq \{x : \Pr(\tilde{F}_s \Phi x + \tilde{F}_s B c_{i|k} + G_s c_{i+1|k} \leq 1) \geq p\}$

for $i = 0, 1, \ldots$

where $\tilde{F}_h := F_h + G_h K$
$\tilde{F}_s := F_s + G_s K$

These polytopic set inclusion conditions are imposed using LP duality
Aside: LP duality

Primal: \(x^* = \arg \max_x c^T x \) subject to \(Ax \leq b \)

Dual: \(\lambda^* = \arg \min_\lambda b^T \lambda \) subject to \(A^T \lambda = c, \lambda \geq 0 \)

Theorem \(c^T x^* = b^T \lambda^* \)

Proof:

Define the Lagrangian function \(L(x, \lambda) := c^T x - \lambda^T (Ax - b) \), then

(i). \(c^T x^* = L(x^*, \lambda^*) \) since KKT conditions imply \(\lambda^*^T (Ax^* - b) = 0 \)

(ii). \(L(x^*, \lambda^*) \leq L(x^*, \lambda) \)

\[\leq L(x, \lambda) + (x^* - x)^T \nabla_x L(x, \lambda) = L(x, \lambda) \]

since \(\lambda \geq 0 \) and \(Ax^* \leq b \)

(iii). \(L(x, \lambda) = b^T \lambda + (c - A^T \lambda)^T x \)

\[= b^T \lambda \]

since \(\nabla_x L(x, \lambda) = 0 \)

Set inclusion conditions

Let \(S_1 = \{x : F_1 x \leq b_1\} \), \(S_2 = \{x : F_2 x \leq b_2\} \)

Theorem

\(S_1 \subseteq S_2 \) iff there exists \(H \geq 0 \) satisfying

\[HF_1 = F_2, \quad Hb_1 \leq b_2 \]
Probabilistic set inclusion conditions

Let \(S_1 = \{ x : F_1 x \leq b_1 \} \), \(S_2 = \{ x : \Pr(F_2 x \leq b_2) \geq p \} \) for random \(F_2, b_2 \)

Theorem

\(S_1 \subseteq S_2 \) iff there exists a random variable \(H \geq 0 \) satisfying

\[
HF_1 = F_2, \quad \Pr(Hb_1 \leq b_2) \geq p
\]

Proof (if): Assume \(H \) exists, then

- for any \(x \in S_1 \), we have \(F_2 x = HF_1 x \leq Hb_1 \),
- so \(\Pr(Hb_1 \leq b_2) \geq p \) \(\Rightarrow \) \(\Pr(F_2 x \leq b_2) \geq p \) \(\Rightarrow \) \(x \in S_2 \)

Proof (only if):

- Assume \(S_1 \subseteq S_2 \), then \(\Pr(\mu \leq b_2) \geq p \), where, for \(i = 1, \ldots, n_F \),

\[
\mu_i := \max_x (F_2)_i x \quad \text{subject to} \quad F_1 x \leq b_1
\]

- LP duality implies

\[
\mu_i = \min_h hb_1 \quad \text{subject to} \quad hF_1 = (F_2)_i, \ h \geq 0
\]

- Define \(H \) via

\[
\left\{ \begin{array}{l}
\mu_i = h^*_i b_1, \ h^*_i F_1 = (F_2)_i, \ h^*_i \geq 0, \\
H_i := h^*_i, \ i = 1, \ldots, n_F,
\end{array} \right.
\]

then this choice of \(H \) satisfies \(\Pr(Hb_1 \leq b_2) \geq p \), \(HF_1 = F_2 \), \(H \geq 0 \)
Let $S_1 = \{x : F_1x \leq b_1\}$, $S_2 = \{x : \Pr(F_2x \leq b_2) \geq p\}$ for random F_2, b_2

Theorem

$S_1 \subseteq S_2$ iff there exists a random variable $H \geq 0$ satisfying

$$HF_1 = F_2, \quad \Pr(Hb_1 \leq b_2) \geq p$$

Note that H is given explicitly in terms of F_1, F_2 by

$$H = F_2(F_1^TF_1)^{-1}F_1^T + PQ$$

where $QF_1 = 0$ and P is a free parameter.

Therefore, given a sample set $\{F_2^{[j]} \mid j = 1, \ldots, n\}$
we can obtain a corresponding sample set $\{H^{[j]} \mid j = 1, \ldots, n\}$:

$$H^{[j]} = F_2^{[j]}(F_1^TF_1)^{-1}F_1^T + PQ, \quad j = 1, \ldots, n$$

Set inclusion conditions

- $x_{i+1|k} \in X_{i+1|k}$ for all $x_{i|k} \in X_{i|k}$ is enforced by

 $$\alpha_{i+1|k} \geq H^{(j)}\alpha_{i|k} + VB^{(j)}c_{i|k}, \quad i = 0, 1, \ldots$$

 where $H^{(j)} = \arg\min_H H1$ subject to $HV = V_i\Phi^{(j)}$, $H \geq 0$

 $$j = 1, \ldots, p$$

- $F_hx_{i|k} + G_hu_{i|k} \leq 1$ is enforced by

 $$H_h\alpha_{i|k} + G_hc_{i|k} \leq 1, \quad i = 0, 1, \ldots$$

 where $H_h = \arg\min_H H1$ subject to $HV = \tilde{F}_h$, $H \geq 0$

- $\Pr(F_sx_{i+1|k} + G_su_{i+1|k} \leq 1) \geq p$ is enforced by

 $$\Pr(H_s\alpha_{i|k} + \tilde{F}_sbc_{i|k} + G_sc_{i+1|k} \leq 1) \geq p, \quad i = 0, 1, \ldots$$

 where $H_s = \arg\min_H H1$ subject to $HV = \tilde{F}_s\Phi$, $H \geq 0$
Terminal condition

For a prediction horizon M and a control horizon N, with $M \geq N$:

- $\alpha_{i|k}$ is computed explicitly as a variable in the online MPC optimization for $0 \leq i \leq M$
- $\alpha_{i|k}$ satisfy $\alpha_{i+1|k} \geq H^{(j)} \alpha_{i|k}$ for $N \leq i \leq M$
- $\alpha_{i|k}$ is defined by $\alpha_{i+1|k} := \max_j \{ H^{(j)} \alpha_{i|k} \}$ for all $i \geq M$
- a terminal constraint is imposed on $\alpha_{M|k}$ so that $H_h \alpha_{i|k} \leq 1$ and $\Pr(H_h \alpha_{i|k} \leq 1) \geq p$ for all $i > M$

Terminal condition

If $S = \{ x : Vx \leq 1 \}$ is λ-contractive, then

$$\Phi^{(j)} S \subseteq \lambda S \iff \exists H \geq 0, H^{(j)} V = V \Phi^{(j)}, H^{(j)} 1 \leq \lambda 1,$$

i.e.

$$\| H^{(j)} \|_\infty \leq \lambda$$

This bound is the basis of the terminal conditions:

Theorem

If $\lambda \| H_h \|_\infty \| \alpha_M \|_\infty \leq 1$, then $H_h \alpha_{i|k} \leq 1$ for all $i > M$

Proof: $\| H^{(j)} \|_\infty \leq \lambda$ implies $\| \alpha_{i+1|k} \|_\infty \leq \lambda \| \alpha_{i|k} \|_\infty$ for all $i \geq M$

$$\Rightarrow \| H_h \alpha_{i+1|k} \|_\infty \leq \| H_h \|_\infty \| \alpha_{i+1|k} \|_\infty$$
$$\leq \lambda^{i-M+1} \| H_h \|_\infty \| \alpha_M \|_\infty$$
$$\leq \lambda^{i-M}$$
Terminal condition

If $S = \{x : Vx \leq 1\}$ is λ-contractive, then

\[
\Phi^{(j)} S \subseteq \lambda S \iff \exists H \geq 0, H^{(j)} V = V \Phi^{(j)} , H^{(j)} 1 \leq \lambda 1 , \text{i.e.}
\]

\[
\|H^{(j)}\|_\infty \leq \lambda
\]

This bound is the basis of the terminal conditions:

Theorem

If $\Pr(\lambda \|H_s\|_\infty \|\alpha_M\|_\infty \leq 1) \geq p$, then $\Pr(H_s \alpha_i | k \leq 1) \geq p$ for all $i > M$

Proof: $\|H^{(j)}\|_\infty \leq \lambda$ implies $\|\alpha_{i+1|k}\|_\infty \leq \lambda \|\alpha_i|k\|_\infty$ for all $i \geq M$

\[
\Rightarrow \|H_s \alpha_{i+1|k}\|_\infty \leq \|H_s\|_\infty \|\alpha_{i+1|k}\|_\infty \\
\leq \lambda^{i-M+1} \|H_s\|_\infty \|\alpha_{M|k}\|_\infty \\
\leq \lambda^{i-M}
\]

Receding horizon control law

Chance-constrained MPC problem formulation

Offline: compute $V, H_h, H_s, H^{(j)}, j = 1, \ldots, p$

Online: at $k = 0, 1, \ldots$:

(i). Solve $c_k^* = \arg\min_{c_k} J(x_k, c_k)$

\[
\text{s.t. } \alpha_{i+1|k} \geq H^{(j)} \alpha_i | k + VB^{(j)} c_i | k , \quad i = 0, \ldots, M - 1 \\
H_h \alpha_i | k + G_h c_i | k \leq 1 , \quad i = 0, \ldots, M \\
\Pr(H_s \alpha_i | k + \tilde{F} B c_i | k + G_s c_{i+1|k} \leq 1) \geq p , \quad i = 0, \ldots, M \\
\alpha_0 = V x_k , \quad \lambda \|H_h\|_\infty \|\alpha_M\| \leq 1 , \quad \Pr(\lambda \|H_s\|_\infty \|\alpha_M\|_\infty \leq 1) \geq p
\]

(ii). Implement $u_k = K x_k + c_0^* | k$

* Recursive feasibility: $c_{k+1} = \{c_{1|k}^*, \ldots, c_{N-1|k}^*, 0\}$ is feasible at time $k + 1$

* $u_k \to K x_k$ and $x_k \to \gamma S$ for some $\gamma > 0$ in finite time since $S = \{x : Vx \leq 1\}$ is λ-contractive hence $x = 0$ is asymptotically stable
Receding horizon control law

Sampled MPC problem formulation

Offline: compute V, H_h, $H_s^{[l]}$, $l = 1, \ldots, n$, $H^{(j)}$, $j = 1, \ldots, p$

Online: at $k = 0, 1, \ldots$

(i). Solve $c_k^* = \arg\min_{c_k} J(x_k, c_k)$

\[
\begin{align*}
\text{s.t. } & \alpha_{i+1|k} \geq H^{(j)} \alpha_{i|k} + V B^{(j)} c_{i|k}, & i = 0, \ldots, M - 1 \\
& H_h \alpha_{i|k} + G_h c_{i|k} \leq 1, & i = 0, \ldots, M \\
& H_s^{[l]} \alpha_{i|k} + \tilde{F} B^{[l]} c_{i|k} + G_s c_{i+1|k} \leq 1 & i = 0, \ldots, M \\
& \alpha_0 = V x_k, \; \lambda \|H_h\|_\infty \|\alpha_M\| \leq 1, \; \lambda \|H_s^{[l]}\|_\infty \|\alpha_M\|_\infty \leq 1, \\
& \forall l \in I, \; |I| \geq q
\end{align*}
\]

(ii). Implement $u_k = K x_k + c_{0|k}^*$

- Recursive feasibility: $c_{k+1} = \{c_{1|k}^*, \ldots, c_{N-1|k}^*, 0\}$ is feasible at time $k + 1$

- $u_k \to K x_k$ and $x_k \to \gamma S$ for some $\gamma > 0$ in finite time

hence $x = 0$ is asymptotically stable

Receding horizon control law

Summary of convergence argument:

- Recursive feasibility and the definition of the cost as an expected value (or nominal) quadratic cost implies

\[
c_{0|k}^* \to 0 \quad \text{as} \quad k \to \infty
\]

and, for any $\epsilon > 0$, there exists finite n such that

\[
|c_{0|k}^*| \leq \epsilon 1 \quad \forall k \geq n
\]

- λ-contractivity of $S = \{x : V x \leq 1\}$ (i.e. $\Phi^{(j)} S \subseteq \lambda S \; \forall j$) implies

\[
V x_{k+1} \leq \max_j V (\Phi^{(j)} x_k + B^{(j)} c_{0|k}^*) \leq \lambda V x_k + \epsilon \max_j V B^{(j)} 1, \quad \text{for all} \; k \geq n
\]

- Hence $\lambda < 1$ implies

\[
\lim_{m \to \infty} V x_{n+m} \leq \epsilon \frac{1}{(1 - \lambda)} \max_j V B^{(j)} 1
\]

so, for any $\epsilon' > 0$, there exists finite r such that $V x_k \leq \epsilon' 1$ for all $k \geq r$

and hence $u_k = K x_k$ for all $k \geq r$
Theorem
The sampled MPC law \(u_k = Kx_k + c^*_0|_k \) satisfies the probabilistic constraint
\[
\Pr_x(F_s x_{k+1} + G_s u_{k+1} \leq 1) \geq p
\]
with a confidence of at least \(F_{n,q - Nn_u}(p) \) at each time \(k = 0, 1, \ldots \)

Proof:
A solution of the sampled MPC optimization is feasible for
\[
\begin{align*}
\min_{c_k} J(x_k, c_k) \\
\text{subject to} \quad & F_h x_{i|k} + G_h c_{i|k} \leq 1, \quad i = 0, \ldots, M \\
& F_s (\Phi[j] x_{i|k} + B[j] c_{i|k}) + G_s c_{i+1|k} \leq 1, \quad i = 0, \ldots, M \\
& \forall j \in I \subset \{1, \ldots, n\}, |I| \geq q
\end{align*}
\]
and the solutions of this problem are feasible for the chance-constrained MPC optimization with confidence at least \(F_{n,q - Nn_u}(p) \).

Numerical example

- System matrices:
 \[
 A = A_0 + \sum_{j=1}^{3} w_j \Delta_A^{(j)}, \quad B = B_0 + \sum_{j=1}^{3} w_j \Delta_B^{(j)}
 \]
 with random \((w_1, w_2, w_3)\) defined by a centre-weighted Dirichlet distribution such that \(|w_1 + w_2 + w_3| \leq 1\), and
 \[
 A_0 = \begin{bmatrix} -1.765 & -0.866 \\ 0.677 & 0.322 \end{bmatrix}, \quad \Delta_A^{(1)} = \begin{bmatrix} -0 & 0.05 \\ -0.05 & 0 \end{bmatrix}, \quad \Delta_A^{(2)} = \begin{bmatrix} -0.01 & -0.05 \\ 0 & 0.01 \end{bmatrix}, \quad \Delta_A^{(3)} = \begin{bmatrix} -0.01 & 0 \\ 0.05 & 0.01 \end{bmatrix},
 \]
 \[
 B_0 = \begin{bmatrix} 1.939 \\ -0.505 \end{bmatrix}, \quad \Delta_B^{(1)} = \begin{bmatrix} -0.06 \\ 0.05 \end{bmatrix}, \quad \Delta_B^{(2)} = \begin{bmatrix} -0.06 \\ 0.05 \end{bmatrix}, \quad \Delta_B^{(3)} = \begin{bmatrix} 0 \end{bmatrix}
 \]

- Constraints: \(F_h = 0, G_s = 0, \)
 \[
 G_h = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}, \quad F_s = \begin{bmatrix} -1.7 & 6.0 \\ 1.7 & -6.0 \end{bmatrix}
 \]
 Probabilistic constraints required to be satisfied with probability \(p = 0.75 \)

- Cost: \(J(x_k, c_k) := \sum_{i=0}^{\infty} \mathbb{E}(\|x_{i|k}\|^2 + 100u_{i|k}^2) \)
Numerical example

100 closed loop simulations:
Stochastic MPC via sampling

Numerical example

100 closed loop simulations:
Robust MPC (all constraints imposed with $p = 1$)
Numerical example

Prediction horizons: \(N = 3, M = 5 \)

\(n = 420 \) samples taken from the probability distribution of \((A, B)\)

\(q = 332 \) gives 95\% confidence of probabilistic constraint satisfaction

Summary of results for 500 closed loop simulations

<table>
<thead>
<tr>
<th></th>
<th>Sampled SMPC</th>
<th>Robust MPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean closed loop cost</td>
<td>436.2</td>
<td>475.6</td>
</tr>
<tr>
<td>% satisfaction (k = 1)</td>
<td>77.2</td>
<td>100</td>
</tr>
<tr>
<td>% satisfaction (k = 2)</td>
<td>78.4</td>
<td>100</td>
</tr>
<tr>
<td>Average execution time (ms)</td>
<td>98.5</td>
<td>11.3</td>
</tr>
</tbody>
</table>