Probing Dielectric Properties of Metal–Organic Frameworks: MIL-53(Al) as a Model System for Theoretical Predictions and Experimental Measurements via Synchrotron Far- and Mid-Infrared Spectroscopy

Kirill Titov, ‡ Zhixin Zeng, ‡ Matthew R. Ryder, ‡ Abhijeet K. Chaudhari, ‡ Bartolomeo Civalleri, ‡ Chris S. Kelley, ‡ Mark D. Frogley, ‡ Gianfelice Cinque, ‡ and Jin-Chong Tan ‡§

†Multifunctional Materials and Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
‡Department of Chemistry, NIS and INSTM Reference Centre, University of Turin, via Pietro Giuria 7, 10125 Torino, Italy
§Diamond Light Source, Harwell Campus, Chilton, Oxford OX11 0DE, United Kingdom

Supporting Information

ABSTRACT: Emerging nanoporous materials, such as metal–organic frameworks (MOFs), are promising low-k dielectrics central to next-generation electronics and high-speed communication. Hitherto, the dielectric characterization of MOFs is scarce, with very limited experimental data for guiding new materials design and synthesis. Herein we demonstrate the efficacy of high-resolution synchrotron infrared (IR) specular reflectance experiments to study the dynamic dielectric properties of a flexible MOF structure: bistable MIL-53(Al) that exhibits switching between a large pore (LP) and a narrow pore (NP) architecture. We show that the ratio of LP:NP content of a polycrystalline sample can be changed via increased mechanical stress applied for pelleting the MIL-53(Al) powder. We quantify the frequency-dependent dielectric constants over ~1 to 120 THz, identifying all dielectric transitions as a function of stress and phase mixtures, showing how porosity modifies MOF’s dielectric properties.

Porous metal–organic frameworks (MOFs) are hybrid materials renowned for their large surface area,1,2 accompanied by remarkable structural flexibility3–6 and framework dynamics7–10 in response to diverse physical and chemical stimuli.11 Traditionally, the development of MOFs has been instigated by potential applications such as gas storage, CO2 sequestration, and catalysis, destined for familiar microporous materials like zeolites.11–16 More recently, however, the research focus is shifting toward the exploration of MOFs to accomplish technological applications associated with electronics and photonics,11 optoelectronics,12,13 smart switches, and sensors.14–16 On the one hand, there has been a rapidly growing body of work concerning electrically conducting MOFs,17–19 but on the other hand, substantially less attention has been devoted to their dielectric properties,19 which are important for future telecommunications, microelectronics, and photonics applications.

Theoretical calculations20 and a limited set of static dielectric measurements reveal that MOFs are highly promising "low-k" dielectric materials (k ∼ 2–5),20 owing to their porosity and tunable chemical and structural variabilities. Next-generation microelectronics with an operating frequency exceeding 109 Hz (GHz) and high-speed terahertz (THz) communication technologies (1012 Hz and beyond) will require the implementation of new low-k dielectric materials, replacing the classical SiO2 (k ∼ 4) to minimize electronic cross-talk, signal delays, and power losses.21–23 Only a few experiments have been reported to date on the dielectric behavior of MOF-based materials. For example, Eslava et al.24 employed impedance spectroscopy with a capacitor arrangement to measure the dielectric constant of a micrometer-thick ZIF-8 polycrystalline film and determined a relatively low k value of ~2.3 across the frequencies of 100 Hz to 1 MHz. Likewise, Lu et al.25 applied the impedance method to measure the dielectric constants of a Sr-based MOF, where the dehydrated sample has k ≈ 2.4 at under 10 kHz. In addition to the examples above obtained at frequencies below 1 MHz, Redel et al.24 used spectroscopic ellipsometry to study the variation in the refractive index (n) of HKUST-1 films in the visible wavelength range, from which the dielectric constants have been estimated by k = n2. Noteworthy, frequency-dependent dielectric functions ε(ω) of selected Zn-based MOFs have been computed using density functional theory (DFT) up to the near-ultraviolet (UV) spectral range.25 Yet, there are no experimental studies about MOF dielectric characteristics in the higher-frequency region of ~THz (far- and mid-IR),

Received: August 1, 2017
Accepted: September 27, 2017
Published: September 27, 2017
fundamental to the development of emergent wireless communications, electronics, and optical sensors.

Herein we describe the novel application of a high-resolution synchrotron IR specular reflectance method \(^2\) (Beamline B22 MIRIAM, Diamond Light Source) to study the dynamic dielectric characteristics of the MIL-53(Al) polycrystalline powder, encompassing the broad spectral range of 1.2−120 THz. The structural bistability of MIL-53(Al) is well-documented, \(^4\) existing in two structural configurations, namely, large pore (LP) and narrow pore (NP) architectures, as depicted in Figure 1a. Switching between the LP \(\rightleftharpoons\) NP structures can be triggered by water/solvent uptake, temperature swing, or mechanical stress (pressure). \(^27,28\) This provides us with the unique opportunity to monitor the variation in dielectric properties, in which the ratio of LP:NP phase mixtures can be tuned by controlling the externally applied stress.

The as-received MIL-53(Al) powder was used to make nine pellets at increasing pressures; see Figure 1b. It is convenient to refer to the pellets in terms of the mass (in metric tons, t) applied to press each pellet, i.e., the 0.1 t pellet or the 10 t pellet, rather than the uniaxially applied nominal stress (force divided by area) of 7.39 and 739 MPa, respectively. Figure 1c shows the nominal density of the pellets as a function of applied stress. The pellet density appears to follow a logarithmic law (with the 8 t pellet being an outlier as a result of part of the pellet being chipped off) and approach \(\sim\)90% of the theoretical single-crystal density of NP MIL-53(Al) at \(\sim\)800 MPa. This increase in density indicates a drastic decrease in void size and better packing of the crystals inside of the pellets (see SI Figure S6 for a schematic representation). Crystal size is an important consideration here, and we note that the supplied MIL-53(Al) crystals vary in size from 50 nm up to 2 \(\mu\)m (see SI Figure S2 for SEM of the as-received powder). This distribution of crystal sizes is comparable to the wavelength of incident light within the spectral region of interest; thus, some diffraction of the incident beam can occur; see SI Figure S7 for a breakdown of what happens to various parts of the incident beam. Here we note that it is predominantly the specular reflected light that was measured.

Specular reflectance measurements are contingent on the surface quality of the sample. Therefore, the surfaces of each of the prepared pellets were characterized by electron microscopy and quantified using a noncontact optical profilometer and atomic force microscopy (see Figures S4 and S5 in the SI). Figure S5k shows the three different measures of roughness (mean, rms, and mean depth) determined using the 20x and the 50x optics on the profilometer to ensure that the optics were not affecting the accuracy of the measurements. It is evident that the surface roughness of the pellets is low, showing less than 100 nm rms roughness across all of the pellets. This is important for comparing the measured optical and dielectric properties: because the surface quality is unchanged across the pellets prepared under increasing applied stress, it is possible to conclude that the observed changes in the measured properties arise from evolution in the underlying framework structure of MIL-53(Al), as well as the increasing density, but independent of sample surface quality.

The Al−O octahedral sites in MIL-53(Al) have a strong affinity toward water, which results in LP to NP transformation when water molecules enter the pore; the crystal lattice undergoes a contraction from LP to NP. It is thus difficult to obtain purity of phase of MIL-53(Al) under ambient conditions; the moisture in the atmosphere is absorbed, resulting in a mixture of LP and NP configurations even if the material is converted to a pure LP (activated) phase through heating and evacuation prior to exposure to atmosphere. Indeed, because the pellets in this report were all prepared under ambient conditions, the precursor MIL-53(Al) powder contained an amount of its NP phase. We note that after the pellets were prepared they were only exposed to controlled laboratory air; therefore, no increased amount of moisture was allowed to interact with the crystals.

The pellets were then studied using small-angle X-ray scattering (SAXS; see SI Figure S3) and wide-angle X-ray scattering (WAXS; see Figure 2) to determine the crystal structure of the MIL-53(Al) inside of the pellets as a function of pelletizing pressure. We established that with increasing pelletization stress the remaining crystalline material inside of the prepared pellets approached a purely NP phase plus the amorphized LP crystals. The LP and NP powder diffraction patterns were simulated using the CrystalMaker and CrystalDiffract software. \(^29\) Figure 2b shows the results of integration of the area under the largest LP and NP XRD peaks centered on 9° (see the inset marked # in Figure 2a), which were used to track the changing amounts of the LP and NP phases with increasing stress. This analysis shows that the amount of LP phase decreases rapidly with increasing stress, whereas the NP content appears to remain constant. Further
are resonant vibrational responses of the material to the applied peaks in varying magnitude associated with it, accompanied by distinct excitation. Specifically, there is a stepwise decrease in the SI for the complex refractive index. It can be seen that the spectrum is an average across this area, thus making the loss of the LP phase. This spectroscopic evidence leads us to believe that the amorphous LP phase has a structure resembling those cells reduces from 54.4% of a LP unit cell to just 17.6% of a NP unit cell (these values are calculated using the Mercury CSD software). We thus claim that the porosity of the prepared MIL-53(Al) crystals. The inset of Figure S11c shows one example of this transformation in the imaginary part of the dielectric function: the double peak at around 1590 cm\(^{-1}\) (47.7 THz) grows dramatically with increasing applied stress as well as shifting the dominant peak area from 1600 cm\(^{-1}\) (48 THz) down to 1585 cm\(^{-1}\) (47.6 THz). These changes are predicted by ab initio DFT calculations of NP versus LP structures, as can be seen in the same inset (for details of DFT calculations using the CRYSTAL14 code, see SI section 11). Detailed views of the other peaks of \(\varepsilon''\) are presented in Figure S10, which show similar shifts and intensity increases agreeing with DFT predictions of NP versus LP structures. Note that the DFT-predicted \(\varepsilon''\) were scaled down so that they could be plotted together with the experimental spectra in an informative way while preserving the shape and relative intensities of the computed peaks.

The \(\varepsilon''\) peaks grow rapidly from 0.1 to 5 t applied load and level off, which is consistent with the decline in the LP fractional content in Figure 2b up to 5 t followed by a complete loss of the LP phase. This spectroscopic evidence leads us to believe that the amorphous LP phase has a structure resembling the NP phase albeit without long-range periodicity (commonplace in amorphous MOFs\(^{31}\)). Pellet density also increases rapidly over the same range before leveling off after 5 t and approaching 90% of the theoretical NP crystal density. This finding suggests that the porosity of the amorphous LP phase is similar to the porosity of the NP phase. Meanwhile, the theoretical unit cell volume of a LP crystal is 1411.95 Å\(^3\), and it is only 946.7 Å\(^3\) in a NP crystal. Furthermore, the void space in those cells reduces from 54.4% of a LP unit cell to just 17.6% of a NP unit cell (these values are calculated using the Mercury CSD software). We thus claim that the porosity of the prepared pellets falls drastically with an increasing pelletization stress.

The real part of the dielectric function is tied to the imaginary part by Kramers–Kronig relations; therefore, the factors affecting \(\varepsilon'\) are the same as those affecting \(\varepsilon''\). Figure 3 shows the experimental \(\varepsilon'\) spectra as well as the \(\varepsilon''\) values predicted by DFT for LP and NP (see SI Figure S9 for an overlapping \(\varepsilon''\) plot of DFT vs experimental data). The predicted NP \(\varepsilon'\) is higher than that of LP and has higher-

![Figure 2. X-ray analysis of MIL-53(Al) pellets: (a) WAXS (XRD) patterns normalized to the product of density \(\times\) thickness for all of the pellets, with simulated powder XRD patterns for both the LP and NP crystal structures; the NP was simulated with a preferred orientation on the (200) plane with a factor of 0.524 in the CrystalDIffuse software; (b) variation with applied stress of the areas of peaks fitted to the double peak marked # in (a) associated with the LP and NP structures.](image-url)
amplitude resonances. The positions and relative intensities of the resonances captured by experiment agree well with the DFT predictions. Moreover, and most importantly, the rise in the values of ε' of the pellets with decreasing amounts of LP phase agrees with DFT predictions. We attribute this increase to the decrease in porosity of the MIL-53(Al) pellets from LP + NP to an (amorphized LP) + NP structure. Likewise, the transformation from LP to amorphous phase essentially causes a fall in porosity of the crystals, thus further decreasing the porosity of the pellet. This is a neat outcome: a decrease in void volume significantly increases ε' of pellets with the same chemical composition of starting MIL-53(Al).

The above findings are of importance for the design of low-k MOFs (k here is interchangeable with ε' as used by various conventions; see the discussion about the terminology in SI section 2), with the design aim (among others) of keeping the real part of the complex dielectric function below 2. While the spectral range measured in the present experiments lies...
beyond the range of interest for current electronic technology (MHz-GHz), it is plausible to postulate that the observed effect of decreased porosity is similar beyond the range studied here and possibly stronger at frequencies below 1 THz because there appears to be a diverging trend being observed in the value of ε' with decreasing frequency of the applied electromagnetic field.

We thus show that larger pore size of a MOF material results in a lower real part of the complex dielectric function $\varepsilon'(k \rightarrow 0)$ as in other literature. Therefore, when searching for low-k dielectrics, it is prudent to explore those MOF variants, which maximize the pore size. Conversely, for high-k dielectrics, the MOF variants that minimize pore size are likely to yield the best performance. In light of this, a MOF structure that could reversibly and controllably switch between the LP \leftrightarrow NP configurations will open the door to new generation of tunable dielectrics. In our opinion, MIL-53(Al) is an unlikely candidate for practical deployment in conventional electronics because it has a strong affinity for moisture uptake and due to synthetic challenges. Nevertheless, we established that in the region of 50–120 THz, the ε' of all prepared MIL-53(Al) pellets is strictly less than 2 and reaches as low as $k \approx 1.25$ for the pellet with the largest fraction of LP phase (0.1 t). This result is remarkable, and the reader is urged to be aware of the possible issue of intercrystal voids, discussed in detail above, that might affect these figures. Furthermore, the bistability of MIL-53(Al) and the achievable high quality of pellets prepared from its powder are advantageous for further development of the method that we demonstrated for studying dielectric properties of MOFs via specular reflection of synchrotron IR broad-band radiation. This progress opens the door to future studies to accomplish “designer” MOF dielectrics and composite systems.

To conclude, we have demonstrated the efficacy of the specular reflectance method in conjunction with the use of a synchrotron light source for quantifying the detailed dielectric and optical properties of porous framework materials; the proposed approach will be applicable to polycrystalline powders, nanocrystals, nanosheets, etc. Fast acquisition of high-quality spectra is feasible (~minutes), making it possible to rapidly screen a large number of pelleted samples, which can accelerate the development of MOF dielectrics. We also demonstrate excellent agreement of experimental complex dielectric function data with theoretical DFT calculations, which paves the way toward advancing bottom-up MOF designs in the important field of dielectrics.

EXPERIMENTAL METHODS

Activated MIL-53(Al) polycrystalline powder (Basolite A100) was purchased from Sigma-Aldrich and used as received. Pellets with an averaged thickness of ~1 mm were prepared on a standard hydrostatic lab press with a die diameter of 13 mm. All pellets were then characterized via X-ray scattering in transmission mode using the Xenocs NanoInXider (RS3 Materials Characterization Laboratory, ISIS) equipped with two Pilatus 3 2-D detectors for SAXS and WAXS. All X-ray spectra were collected for 300 s under high-resolution beam settings: 400 μm spot size on the sample and 15 Mph/s typical flux. The physical density of each pellet was determined by weighing each pellet and dividing this quantity by its nominal volume (dimensions via a micrometer). The collected X-ray scattering intensities were normalized by density \times thickness of the corresponding pellets. Details of the synchrotron beamline settings for the IR specular reflectance measurements are given in SI section 1. Details of the DFT calculations using the B3LYP-D3(BJ,ATM) method\(^{37–39}\) are given in SI section 11.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcl.7b02003.

Detailed description of the measurements procedures at B22 of Diamond Light Source; discussion of notation conventions in the field of dielectrics; data on the surface quality of the prepared pellets; discussion on the physical phenomena at play in specular reflection off of a MOF pellet; measured reflectance spectra; detailed comparisons of measured ε' against values simulated via DFT; detailed comparisons of measured ε'' against values simulated via DFT; plot of the complex refractive indices for all pellets; details of a further pelletization study for the Sigma supplied MIL-53(Al) crystals; details of the Kramers–König transform used in this study and its MATLAB implementation; and details of the DFT calculations (PDF).

AUTHOR INFORMATION

Corresponding Author

E-mail: jin-chong.tan@eng.ox.ac.uk.

ORCID

Jin-Chong Tan: 0000-0002-5770-408X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the Diamond Light Source for the provision of beamtime SM14902 at B22 MIRIAM. K.T. thanks the Balliol College Scholarship for supporting his postgraduate studies. J.C.T. thanks the Engineering and Physical Sciences Research Council (EPSRC) for research funding (EP/N014960/1). M.R.R. acknowledges the EPSRC DTA and STFC CSM Award (13-05) for postgraduate funding; M.R.R. also thanks the EPSRC for a Doctoral Prize Fellowship. A.K.C. thanks the Samsung GRO for postgraduate funding. We thank the Research Complex at Harwell (RCAh), Oxfordshire, for access to the advanced materials characterization suite. We are grateful to Dr. Gavin Stenning and Dr. Marek Jura (RS3 Materials Characterization Lab) at the ISIS Rutherford Appleton Laboratory for the X-ray characterization facilities.

REFERENCES

(26) See the Supporting Information (SI) for details of methods and details of data analysis.

