Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability†

Matthew R. Ryder, a Bartolomeo Civalleri b and Jin-Chong Tan* a

Understanding the mechanical properties of metal–organic frameworks (MOFs) is crucial not only to yield robust practical applications, but also to advance fundamental research underpinning the flexibility of a myriad of open-framework chemical compounds. Herein we present one of the most comprehensive structural analyses yet on MOF-mechanics: elucidating the complex elastic response of an isoreticular series of topical Zr-based MOFs, explaining all the important mechanical properties, and identifying major trends arising from systematic organic linker exchange. Ab initio density functional theory (DFT) was employed to establish the single-crystal elastic constants of the nanoporous MIL-140(A–D) structures, generating a complete 3-D representation of the principal mechanical properties, encompassing the Young’s modulus, shear modulus, linear compressibility and Poisson’s ratio. Of particular interest, we discovered significantly high values of both positive and negative linear compressibility and Poisson’s ratio, whose framework molecular mechanisms responsible for such elastic anomalies have been fully revealed. In addition to pinpointing large elastic anisotropy and unusual physical properties, we analyzed the bulk modulus of isoreticular Zr-MOF compounds to understand the framework structural resistance against the hydrostatic pressure, and determined the averaged mechanical behaviour of bulk (polycrystalline) MOF materials important for the design of emergent applications.

1. Introduction

Metal–organic frameworks (MOFs)† have generated considerable interest due to their vast physical and chemical versatilities2,3 which can yield wide-ranging technological applications. MOFs are hybrid materials constructed from metal ions and organic linkers self-assembled at the molecular level producing a cornucopia of porous crystalline frameworks united by strong bonds.4,5 One of the most fascinating aspects of MOFs is their large surface area, typically in the range of 1000 to 10 000 m² g⁻¹.4,6 These materials can be tailored for a remarkable array of multifunctional applications, which includes not only gas separation and storage7 that are traditionally associated with porous materials, but also emergent technologies varying from proton conductivity,8 optoelectronics9 and dielectrics10 to drug delivery and bio-sensing.11,12 Some of the most fascinating families of MOFs are porous compounds whose physical structure and chemical affinity can be manipulated, whilst keeping the basic topology of the framework consistent. These families are termed isoreticular MOFs13 and the MIL-140 series14,15 investigated in this work represents a promising example of such a system. The unique ability to rationally design, construct, and tune isoreticular MOFs has further expanded their possible applications. However, an important aspect of being able to take full advantage of all the promising applications is to address the robustness of MOFs in real-world manufacturing environments.16,17 To this end, we will require reliable information of the mechanical properties of MOF chemical structures18 and knowledge about their structural durability and resilience,19,20 both of which are relatively poorly understood. Likewise, engineering of certain practical applications (e.g. mechano-chemical sensors)19,21 need comprehensive and accurate mechanical properties data to design for optimal device performance and lifetime.22 Mechanical tunability23 of MOFs as a result of chemical structural modifications and strong host-guest interactions is also attractive for novel applications.

† Electronic supplementary information (ESI) available: Additional theoretical details, comparison with experiment and literature and additional 3-D plots of mechanical property surfaces. See DOI: 10.1039/c6cp00864j

Received 6th February 2016,
Accepted 3rd March 2016
DOI: 10.1039/c6cp00864j
www.rsc.org/pccp
The number of studies concerned with understanding the basic elastic behaviour of MOFs is still relatively limited.6,18,24 Initially research concentrated on the Young’s modulus (E)25,26 and the bulk modulus (K)27–29 as these properties are more straightforward to characterize experimentally. However, especially for anisotropic materials such as MOFs, a more complete understanding of open framework structural mechanics30,31 can be obtained only by considering other mechanical behaviour described by the shear modulus (G) and Poisson’s ratio (ν). More recently, Brillouin scattering experiments in conjunction with \textit{ab initio} density functional theory (DFT) calculations were used to determine the complete elastic constants of cubic ZIF-8, from which a remarkably low shear modulus was found ($G \approx 1$ GPa).32 The low shear modulus suggested that there could be a heightened chance of shear-induced amorphisation from structural flexibility and framework destabilization,33 which is supported by studies on the ball milling induced amorphisation of a large number of MOFs.34,35 Notably the work on ZIF-832 demonstrated that DFT is a powerful approach capable of establishing the full sets of elastic properties, which are extremely difficult to measure (particularly for low-symmetry crystals).31

There has since been a number of representative MOF structures36,37 and related framework materials38 that have been studied using the \textit{ab initio} DFT approach. Although previous studies attempted to link the MOF mechanical properties to the geometry and compliance of the frameworks, they have yet to fully address the exact chemical structure trends or explain precisely the mechanisms responsible for elastic anomalies associated with shear distortions and counterintuitive Poisson’s ratio. These studies have, nonetheless, demonstrated that DFT can be used efficiently to analyse a wide selection of MOF materials with varying metals, linkers, porosity and network topologies.

In the current work, we study the detailed elastic properties and mechanical behaviour of the entire zirconium (Zr)-based MIL-140 series of isoreticular materials by means of DFT. The series consists of 4 unique materials obtained by varying the complexity of the dicarboxylic acid derived linkers, starting with terephthalic acid, one of the simplest dicarboxylic acid after oxalic acid,39 and the most simplest containing an aromatic ring. This particular series: MIL-140(A–D)14,15 whose chemical structures are shown in Fig. 1, is ideal for understanding precisely how MOF mechanics is affected by the systematic expansion of a porus isoreticular framework. The MIL-140 structures are polymorphs of the topial UiO-66(Zr) material10 but instead of isolated Zr$_6$O metal-oxo clusters, in the MIL-140 frameworks, infinite 1-D zirconium oxide (ZrO) chains act as secondary building units (SBU) and are located along the crystallographic c-axis (Fig. 1). Experiments have demonstrated that UiO-66(Zr) has excellent thermal and chemical stabilities,10 albeit its mechanical stability against structural collapse (amorphisation) has recently been measured to be inferior to those of the MIL-140 series.35 Furthermore it has been suggested that,14 the enhanced hydrothermal stability of MIL-140 is a result of both the reduced flexibility of its 1-D ZrO chains (compared to Zr$_6$O clusters in UiO-66) together with the π···π interactions of the aromatic rings of the MIL-140 linkers. Although Zr-based MOFs are gaining major popularity in latest mainstream scientific literature,15,41 relatively little in fact is reported about their underpinning mechanical trends.

2. Results and discussion

2.1 First-principles quantum mechanical computations

We computed the theoretical single-crystal elastic constants (C_{ij}’s) of the four MIL-140(A–D) porous framework structures using first-principles density functional theory (DFT). We adopted the B3LYP hybrid exchange–correlation functional,42 as recent studies have shown it to produce accurate results, and all-electron atom-centred Gaussian type basis sets, as implemented by the periodic \textit{ab initio} CRYSTAL14 code.43 This computational methodology has recently been validated on a prototypical MOF structure, whose elastic constants have been confirmed \textit{via} Brillouin scattering experiments.32 A full relaxation of both lattice parameters and atomic coordinates was allowed to optimize the structures. Each elastic stiffness tensor was then computed by using the numerical first derivative of the analytic cell gradients, which corresponds to the individual elastic stiffness coefficients C_{ij}’s.44 The coefficients were obtained as a result of deforming the optimized structure in the symmetrical required directions of both positive and negative strain amplitudes, thereby corresponding to the linear elastic stress–strain relationship. Further computational details are given in the ESL.†
2.2 Tensorial analysis to construct the full picture of elastic anisotropy of isoreticular structures

Table 1 summarizes the calculated single-crystal elastic coefficients (C_{ij}'s). All four MIL-140(A–D) structures are monoclinic and hence have thirteen unique elastic constants. On the main diagonal of the elasticity tensor, the coefficients C_{11}, C_{22} and C_{33} represent the framework stiffness along the three principal crystallographic orientations (a, b, and c-axis respectively) under a uniaxial strain. The shear coefficients C_{44}, C_{55} and C_{66} signify the framework stiffness against an angular deformation when subjected to a shear strain. The remaining coefficients represent stiffness couplings. Specifically, the C_{12}, C_{13} and C_{23} coefficients are tensile–tensile coupling between two principal cell axes; the C_{15}, C_{26} and C_{35} coefficients represent the tensile–shear coupling, and the stiffness under shear–shear coupling is represented by the C_{66} coefficient. Directionally dependent mechanical properties were derived from these elastic coefficients by means of tensorial analysis using the Mathematica and the EAM codes. The maximum and minimum values of various elastic properties, together with the extent of elastic anisotropy are summarized in Table 2. The properties are namely: Young's modulus (E), shear modulus (G), linear compressibility (b), Poisson's ratio (v) and Ledbetter anisotropy (A^*) and are defined in detail in the following sections.

Table 1
Single-crystal elastic stiffness constants (C_{ij}'s) of MIL-140(A–D). The monoclinic crystal symmetry entails 13 independent elastic coefficients

<table>
<thead>
<tr>
<th>Structure</th>
<th>C_{11}</th>
<th>C_{22}</th>
<th>C_{33}</th>
<th>C_{44}</th>
<th>C_{55}</th>
<th>C_{66}</th>
<th>C_{12}</th>
<th>C_{13}</th>
<th>C_{23}</th>
<th>C_{25}</th>
<th>C_{35}</th>
<th>C_{36}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-140A</td>
<td>94.0</td>
<td>163.0</td>
<td>52.7</td>
<td>3.2</td>
<td>9.1</td>
<td>27.4</td>
<td>42.7</td>
<td>29.6</td>
<td>−4.0</td>
<td>17.4</td>
<td>0.3</td>
<td>−10.4</td>
</tr>
<tr>
<td>MIL-140B</td>
<td>80.5</td>
<td>143.1</td>
<td>47.2</td>
<td>5.0</td>
<td>6.6</td>
<td>20.9</td>
<td>36.4</td>
<td>29.3</td>
<td>11.7</td>
<td>12.3</td>
<td>4.6</td>
<td>2.1</td>
</tr>
<tr>
<td>MIL-140C</td>
<td>64.0</td>
<td>129.2</td>
<td>32.6</td>
<td>2.4</td>
<td>4.3</td>
<td>18.4</td>
<td>30.2</td>
<td>17.7</td>
<td>−10.5</td>
<td>12.6</td>
<td>−4.1</td>
<td>−2.7</td>
</tr>
<tr>
<td>MIL-140D</td>
<td>62.2</td>
<td>109.4</td>
<td>29.3</td>
<td>1.6</td>
<td>3.0</td>
<td>17.0</td>
<td>25.2</td>
<td>17.6</td>
<td>7.2</td>
<td>8.4</td>
<td>2.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

2.3 Young's modulus describing framework stiffness response in uniaxial stress state

We start by describing the Young's modulus (E), which is the ratio of uniaxial stress (σ) to uniaxial strain (ε) in one-dimensional elastic deformation. As such by definition, E is analogous to the stiffness property (i.e. ratio of load to displacement) of a classical Hookean spring. However, it can be seen in Fig. 2 that the framework stiffness response of the single crystals of MIL-140(A–D) are markedly anisotropic. The 3-D representation of the Young's modulus of MIL-140A is shown in Fig. 2A, where the surface corresponds to a spherical plot of $E(\mathbf{u})$ by varying the unit vector \mathbf{u}. Fig. 2B presents the systematic trends determined in the maximum and minimum Young's moduli for MIL-140(A–D), along with the corresponding degree of anisotropies ($A_E = E_{\text{max}}/E_{\text{min}}$). Interestingly, we found the general morphology and shape of the anisotropic E surfaces are similar for each structure (see ESI, Fig. S1). The extent of anisotropy increases when going through the reticular series, specifically the values of anisotropy (A_E) are 12.6, 13.2, 23.8 and 33.1 for MIL-140 from A to D, respectively. These magnitudes are also consistent with the Ledbetter anisotropy values (A^*), also shown in Table 2, which are established from the ratio of transverse sound velocities ($V_{\text{min}}^2/V_{\text{max}}^2$).

Table 2
Elastic properties of MIL-140(A–D). Young’s shear moduli anisotropy are $A_E = E_{\text{max}}/E_{\text{min}}$ and $A_G = G_{\text{max}}/G_{\text{min}}$, respectively

<table>
<thead>
<tr>
<th>Elastic property</th>
<th>MIL-140 series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Young's modulus (GPa)</td>
<td>E_{max}</td>
</tr>
<tr>
<td></td>
<td>E_{min}</td>
</tr>
<tr>
<td></td>
<td>A_E</td>
</tr>
<tr>
<td>Shear modulus (GPa)</td>
<td>G_{max}</td>
</tr>
<tr>
<td></td>
<td>G_{min}</td>
</tr>
<tr>
<td></td>
<td>A_G</td>
</tr>
<tr>
<td>Linear compressibility (TPa⁻¹)</td>
<td>β_{max}</td>
</tr>
<tr>
<td></td>
<td>β_{min}</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>ν_{max}</td>
</tr>
<tr>
<td></td>
<td>ν_{min}</td>
</tr>
<tr>
<td>Ledbetter anisotropy</td>
<td>A^*</td>
</tr>
</tbody>
</table>

2.3 Shear modulus defining framework rigidity against structural distortion

Turning to the shear modulus (G), which is defined as the ratio of shear stress (τ) to shear strain (γ) under the influence of a...
pair of anti-parallel shearing forces. In essence, G characterizes the rigidity of the framework structure against an angular deformation or shape distortion. A 3-D representation surface of the shear modulus of MIL-140A is shown in Fig. 3A, whose 2-D projections normal to the (100) and (001) planes are given in Fig. 3B and D. It differs from that of the Young’s modulus (Fig. 2), as the shear modulus, $G(u, n)$ is a function of two unit vectors and hence is a 4-D property. 46 As presented in Fig. 3, we therefore limit the additional parameter (w) to only maximum and minimum values of the 3-D shear modulus, shown in blue and green respectively. The monotonic trend in the maximum and minimum shear moduli for MIL-140(A–D), along with the corresponding anisotropies are mimicking that observed for the Young’s modulus. Particularly, one should recognize that these trends are consistent with recent mechanical stability experiments conducted on the same series via ball milling,35 in which the grinding time required to cause mechanical collapse (framework amorphisation) decreased in the same sequence in line with declining extremal shear moduli (Fig. 3C): MIL-140A > MIL-140B > MIL-140C > MIL-140D.

The general shape of the anisotropic shear modulus surfaces are again similar for each structure and can be seen in the ESI† (Fig. S2), endorsing the observed trends. The maximum shear modulus (G_{max}) for all MIL-140 structures is located in the vicinity of the ⟨110⟩ directions (small deviations due to the angle of the linker). This can be explained by the rigid linker reinforcing the (otherwise pliant) 4-noded framework structure, this mechanism is illustrated in Fig. 3E. The reduction in the maximum shear modulus, as we go through the MIL-140 series, is associated with the reduction in the rigidity of the longer linker enhancing flexibility. The minimum shear modulus (G_{min}) is less obvious, we discovered that there are two separate mechanisms that may result in approximately the same low values (Fig. 3E). These minimal rigidity values are located in the vicinity of the h_{110} and h_{001} axes (again small deviations due to the angle of the linker). The connection between the two similar values is the 1-D chains of Zr polyhedra, where the shear strain exerted along the b-axis (denoted as $\gamma_{\langle010\rangle}$) generates an angular deformation of the 4-noded ring configuration, however this time in the absence of any structural resistance by the reinforcing linker because it is positioned parallel to $\gamma_{\langle010\rangle}$. Another pliant angular distortion mechanism which we identified along the c-axis (i.e. $\gamma_{\langle001\rangle}$), involves shearing the ‘tunnel-shaped’ pore of the framework, for which the reinforcing linkers essentially fold in the ⟨001⟩ directions thus maintaining their planarity.
2.4 Linear compressibility and its negative response

Now we discuss linear compressibility (β), which is a measure of directional contraction under hydrostatic pressure. Fig. 4 shows the 3-D representation for each of the MIL-140 structures, where the surface corresponds to a spherical plot of $\beta(u)$ by varying the unit vector \mathbf{u}. The variation in the maximum and minimum linear compressibility for MIL-140(A–D) does not obey the same trend as the properties discussed above. While the general shape of the anisotropic surfaces are similar for each structure, interestingly the direction of the maximum and minimum is the same for MIL-140A and MIL-140C, but the opposite direction was determined for MIL-140B and MIL-140D. Another striking feature that these pairs have in common is that MIL-140A and MIL-140C both exhibit negative linear compressibility (NLC), whereas MIL-140B and MIL-140D do not. Indeed NLC is a rare and much sought after elastic anomaly,48 whereby the framework experiences a linear expansion (instead of contraction) under hydrostatic pressure. We note that the NLC effects of both MIL-140A ($\beta_{\text{min}} = -3$ TPa$^{-1}$) and MIL-140C (-10 TPa$^{-1}$) are relatively strong, whose magnitudes are on par with contemporary NLC materials, such as hybrid zinc formate (-1.8 TPa$^{-1}$),28 Ag$_3$[Co(CN)$_6$] (≈ -5 TPa$^{-1}$),48 and a Ag-based MOF (≈ -28 TPa$^{-1}$).49

The maximum values of each framework can be understood by scrutinizing the π-stacking of the aromatic rings (Fig. 4E and F), with the stacking occurring approximately in the (001) axis and the rings tilting in the corresponding direction of the maximum for each structure. This explains why we see a reversal of the direction for MIL-140B and MIL-140D to that of MIL-140A and MIL-140C. Hence the direction of maximum linear compressibility (β_{max}) is located in line with the direction of the centroid of the phenyl rings, since the attraction of the $\pi \cdots \pi$ stacking will allow for contraction upon hydrostatic compression. It follows that the minimum values (β_{min}) will exist in the orthogonal direction to the maximum axis (due to phenyl ring rigidity), which matches the direction that is compressing the phenyl rings in plane. Furthermore, the NLC effect observed for MIL-140A and MIL-140C are likely to be the result of the phenyl rings rotating (yielding expansion) due to the higher level of rotational flexibility, when compared with the more rigid linker present in MIL-140B and the bulkier linker of MIL-140D. In particular, the presence of the bulky chlorine atoms of MIL-140D (see Fig. 1D) can lead to mechanical responses due to a balance between $\pi \cdots \pi$ stacking and repulsive force interactions. The negative values witnessed for MIL-140A and MIL-140C would encourage further experimental studies to investigate and further validate the postulated mechanisms suggested in this theoretical work.

2.5 Poisson’s ratio (ν) and mechanism of anomalous auxeticity

Here we focus on the Poisson’s ratio ($\nu_{ij} = -\epsilon_j/\epsilon_i$), which is defined as the quotient of lateral strain (ϵ_j) to axial strain (ϵ_i). Conventional isotropic materials typically feature a positive value of ν not exceeding 0.5,50 since an axial expansion will be accompanied by a lateral contraction in the transverse direction (and vice versa) such that the volume is conserved. Being elastically anisotropic, however, the Poisson’s ratio of the MIL-140s is complicated which can be seen as 3-D representations for MIL-140A and MIL-140D in Fig. 5A and B (also see ESI,† Fig. S3). Because the Poisson’s ratio is a function of two unit vectors $\nu(u,n)$, we constrain the additional χ parameter to show only maximum and minimum values on the 3-D surfaces, shown in blue for the maximum and green and red for the positive and negative minima respectively.

The representation surface is highly anisotropic with the most interesting values being the ‘auxetic’ directions giving negative Poisson’s ratios (NPR). The most auxetic direction, exhibiting $\nu_{\text{min}} \approx -0.1$ to -0.6 (Table 2) is the result of a complex mechanism and is not trivial to fully describe, but can be explained by the expansion of the 4-noded ring architecture (Fig. 5D) connected by ZrO$_6$ clusters behaving like hinges. This effect would be larger, if the structures were not ‘reinforced’ (by bridging ligand) and this has been demonstrated for example by Ortiz et al. for MIL-53.38 Herein the NPR trend observed when going through the MIL-140 series (see Fig. 5C) is a systematic response to the reduction in the rigidity of the linker present.
In addition, we established that the direction of the maximum Poisson’s ratio is a result of the π·π interactions of the aromatic rings. This also explains the change in direction of the maximum Poisson’s ratio witnessed for MIL-140A vs. MIL-140D due to the difference in the tilting of the aromatic rings (elaborated in former section on linear compressibility, see Fig. 4E and F). In Fig. 5E, it is promising to see that our values matched very well when comparing the relationship between both the maximum and minimum Poisson’s ratio with the level of elastic anisotropy, to that of other monoclinic materials and also reported values for other MOF materials.

2.6 Bulk modulus (K) and polycrystalline elastic properties

Lastly moving away from the single-crystal properties, we will discuss the bulk modulus and present the averaged polycrystalline properties. These properties are of importance when considering MOFs in other forms than a single crystal. Good examples are the use of MOF materials in the form of pelletized powders, randomly-oriented thin films and coatings or compact polycrystalline membranes. The bulk modulus for anisotropic materials is not an exact calculation and there are two main methods to obtain the value. The first is the Voigt method and the second is the Reuss method; both methods are averaging techniques, where the Voigt assumes uniform strain and the Reuss assumes uniform stress. The most common way to report the bulk modulus for anisotropic materials is to give the average of the two and this is known as the Hill method. The resultant values are commonly called the Voigt–Reuss–Hill (VRH) averages, which are given for MIL-140(A–D) in Table 3. The difference in the two main methods is significant for example the Voigt values for MIL-140A are 54.35 GPa and 36.21 GPa respectively. However, these values would indicate that the MIL-140 series are not particularly ‘soft’ under a hydrostatic pressure; by comparison we note the bulk moduli are appreciably lower for MOF-5 (~17 GPa), ZIF-8 (~8 GPa) and even MIL-53-Al (~7 GPa).

It is also worth noting that all of the polycrystalline values for the Poisson’s ratio are almost identical (~0.35–0.37) and clearly all positive. This result emphasizes the fact that in order to utilize the auxetic response discussed above (Fig. 5) for polycrystalline thin films, the materials would have to be grown for example in a controlled epitaxial manner to yield the desired crystal orientations.

3. Concluding remarks

This work represents a comprehensive theoretical study to untangle the salient mechanical characteristics of an isoreticular series of Zr-based porous MOF materials. Isoreticular MIL-140(A–D)
insights into the detailed physical mechanisms underpinning show that on the basis of the length of the organic linkers. Finally, we discover that because the metal-coordination sites are identical, isoreticular MOF chemistry. In fact, in isoreticular systems we further emphasize the enormous prospect to design, engineer, and fine tune the desired framework mechanics by exploiting the fundamental connections that underpin elastic anisotropy and flexibility. This provides the unique opportunity to precisely establish its primary structure–property trends, so as to explicate the fundamental connections that underpin elastic anisotropy and physical anomalies of MOFs. Significantly, the extremal shear moduli property trends we established here are in excellent correlation to recent experiments revealing the rates at which MIL-140 will undergo mechanically-induced amorphisation, confirming the efficacy of applying rigorous elasticity theory to explaining and forecasting structural stability trends of isoreticular MOF systems.

Our current work also lays the foundation to understanding the mechanical property landscape of isoreticular MOFs, as shown in Fig. 6, in relation to other major classes of ‘conventional’ technical materials for practical applications. The envelopes (Fig. 6) defining the shear and Young’s moduli of MIL-140 are intersecting those of ceramics, metals, polymers and foams; thereby bridging the structural characters of the intrinsically ‘rigid’ inorganic solids and the relatively ‘pliant’ polymers; this effect is indeed significantly stronger than what was previously thought. The mechanical landscapes illustrated in Fig. 6 further emphasize the enormous prospect to design, engineer, and fine tune the desired framework mechanics by exploiting isoreticular MOF chemistry. In fact, in isoreticular systems we discover that because the metal-coordination sites are identical, the structure–mechanical property trends can be rationalized on the basis of the length of the organic linkers. Finally, we show that ab initio computational models could offer valuable insights into the detailed physical mechanisms underpinning exotic MOF mechanics. Particularly, the source of counterintuitive phenomena such as negative linear compressibility (NLC) and negative Poisson’s ratio (auxeticity) can be fully explained on the basis of the modular construction of MIL-140 frameworks. Our work sheds light on the general principles controlling chemical structure-to-mechanical behaviour correlations and demonstrates the significant promise of mechanical tunability for guiding rational design of isoreticular MOFs for specific applications.

Acknowledgements

M. R. R. gratefully acknowledges postgraduate scholarships from the UK Engineering and Physical Sciences Research Council (EPSRC) DTA Award and the Science and Technology Facilities Council (STFC) Centre for Molecular Structure and Dynamics (CMSD) Award No. 13-05. We acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work (http://dx.doi.org/10.5281/zenodo.22558). We thank the STFC e-Science Department for continued access to the SCARF cluster at the Rutherford Appleton Laboratory (RAL).

References

6 A. G. Slater and A. I. Cooper, Science, 2015, 348, aaa8075.
45 Wolfram Research Inc., 2015.