Supersonic cold spraying for zeolitic metal–organic framework films

Do-Yeon Kim, Bhavana N. Joshi, Jong-Gun Lee, Jong-Hyuk Lee, Ji Sun Lee, Young Kyu Hwang, Jong-San Chang, Salem Al-Deyab, Jin-Chong Tan, Sam S. Yoon

A School of Mechanical Engineering, Korea University, Seoul 136-713, Republic of Korea
B Res. Group for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea
C Dept. of Chem., Sungkyunkwan University, Suwon 440-476, Republic of Korea
D Petrochem. Research Chair, Dept. of Chem., King Saud Univ., Riyadh 11451, Saudi Arabia
E Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom

Available online 10 March 2016
Received 2 February 2016
Received in revised form 2 March 2016
Accepted 4 March 2016

HIGHLIGHTS
• Zeolitic metal–organic framework (ZIF-8) films were deposited by supersonic spraying.
• This supersonic spray method produced textured crystalline films on copper and glass substrates.
• Addition of high-boiling-point solvents in ZIF-8 pores resulted in preferred crystal orientations.
• The produced films are microstructurally compact and strongly adherent to substrates.

ARTICLE INFO
Article history:
Received 2 February 2016
Received in revised form 2 March 2016
Accepted 4 March 2016
Available online 10 March 2016

Keywords:
Metal–organic framework
Supersonic spray-coating

ABSTRACT
We describe the first use of high-rate supersonic spray coating to deposit thin films of ZIF-8, a zeolitic metal–organic framework (MOF), adopting a sodalite architecture. This cold-spray technique is versatile and scalable, with tunable processing parameters capable of generating either a textured crystalline film or a randomly oriented polycrystalline coating on both metallic and non-metallic substrates. We provide evidence that guest occupancy by organic solvents (dimethylformamide, dimethylacetamide, and dimethylsulfoxide) in the sodalite cage of ZIF-8 structurally stabilizes the framework against high-velocity impact, resulting in the preferred orientations observed. Moreover, we show that amorphous ZIF-8 films can be straightforwardly obtained at high air pressure exceeding 7 bars in which the particle velocity is ~500 m/s. It is anticipated that this high-throughput approach can be adapted to fabricate microstructurally compact and strongly adhered ZIF-8 films.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Metal–organic frameworks (MOFs) are extensively studied as a new class of multifunctional materials in materials science and chemistry [1]. In MOFs, metal atoms are coordinated with organic ligands to form diverse crystalline 3D frameworks. The structures of MOFs can be dense or porous; MOFs of specific structures can be used in many applications such as gas separation, sensing, catalysis, optoelectronics, and magnetism [2–4]. Zeolitic imidazolate frameworks (ZIFs) [5] comprise an important subclass of MOFs closely related to zeolitic silica polymorphs as per their chemical bonding (Si–O–Si); [6] they typically consist of divalent metal cations (e.g., M = Zn²⁺, Co²⁺) solely coordinated by the nitrogen atoms of the imidazolate (Im) bridging ligand (M-Im-M), forming microporous crystalline lattices. In the ZIF family, ZIF-8 contains Zn(II) metal ions connected by 2-methylimidazolate (mIm) organic linkers, resulting in periodic frameworks of Zn(mIm)₂. ZIF-8 has been extensively studied for its tunable pore size, chemical stability, and thermal robustness [7,8]. The topology of ZIF-8 corresponds to that of the zeolite sodalite [9], which can be described as a space-filling packing of truncated octahedra. In particular, ZIF-8 crystallizes as a cubic lattice (space group I43m) containing cavities with diameters of 11.6 Å, connected via six-membered ring apertures with 3.5 Å windows and four-ring apertures [10]. The good thermal and chemical stability of ZIF-8 [11], combined with the regular pore architecture and long-range ordering of the structure, has motivated extensive research in the fields of membrane science, gas storage, drug delivery, and catalysis [12–14]. With
respect to mechanical stability, the crystal structures of ZIFs are more flexible than the analogous aluminosilicate zeolites [15]; hence, they can undergo structural transformations and are susceptible to collapse under the application of either low pressure (0.34 GPa) [16] or temperature (300 °C) [6].

The deposition of MOF thin films and surface coatings is under intense study because of the many possible applications of thin-film MOFs in optical, electronic, and energy harvesting devices [17]. MOF applications would greatly increase if a high-throughput facile processing route were developed to fabricate MOFs as supported homogenous thin films. Despite numerous studies, the majority of reported techniques are not ideal for commercial manufacturing and production scale-up [2,14,4,18]. The most common methods of MOF film deposition are summarized below. Secondary growth is one of these methods, entailing a stepwise deposition in which the first step deposits a seed layer and the second step grows further layers by solvothermal synthesis and dip-coating from solutions [19]. Another method is in situ crystallization, where the ZIF layer is grown on a bare substrate by solvothermal synthesis. Crystal orientation can affect the properties of the membranes or films, depending on the applications. Secondary growth is useful to control the crystal orientation of the MOF films [20]. Highly oriented ZIF-8 films were prepared by Bux et al. [19] on alumina discs via the secondary growth method. In the first step, they deposited a seed layer by dip-coating using a mixture of ZIF-8 nanocrystals dispersed in water/polyethylenimine (PEI); the seed layer was treated solvothermally to grow the films. They reported the growth of crystalline ZIF-8 films with highly oriented (100) planes after 2 h of deposition; these membranes showed improved performance in H2/hydrocarbon separation over typical ZIF-8 films. A set of b-oriented (010) and c-oriented (002) ZIF-L membranes was prepared by Zhong et al. [20] employing the secondary growth method for gas permeation. The b-oriented films were grown from an in situ seed layer by dip coating on porous alumina. They used seeded alumina for three rounds of secondary growth by the same method to grow b-oriented ZIF-L films. For the c-oriented films, ZIF-L crystals dispersed in PEI were vacuum-filtered onto porous alumina as a seed layer. Using the secondary growth method, c-oriented ZIF-L membranes were prepared by dip coating for 30 min. The gas permeation properties of the c-oriented ZIF-L membranes were reported as better than those of the b-oriented ZIF-L membranes. Cookney et al. [13] reported the synthesis of ultrathin ZIF-8 nanofilms on silicon by stepwise dip-coating. The films were morphologically dense and homogenous, with crystallinity oriented towards the (112) plane. Recently, Papporello et al. [21] deposited ZIF-8 films on both metallic and nonmetallic substrates utilizing different solvent media by the solvothermal method. They grew (200)- and (110)-oriented ZIF-8 films on copper using a mixed solvent of methanol and acetate, and then prepared structured catalysts based on the films. Hence, the fabrication of oriented ZIF thin films is important for selective gas separation [19,20], structured catalysts [21], and optical applications [3].

While some recent reports describe the application of spray-type processing strategies to fabricate MOF films, the approach we describe in the current study is distinct from those found in the literature. Melgar et al. [22] reported the direct spraying of ZIF-7 membranes by electrospraying on an alumina disk, where the membrane thickness was controlled by changing the electrospray solution flow rate and deposition time. These ZIF-7 membranes showed H2 permeability and H2/CO2 separation capacity. Likewise, Fan et al. [23] used a simultaneous spray self-assembly approach in order to increase the ZIF-8 particle loading while maintaining a uniform dispersion. They synthesized ZIF-8/Polydimethylsiloxane (PDMS) composite membranes on polysulfone for butanol pervaporation. Sanchez and co-workers [24] reported the application of spray-drying to make multicomponent MOF hollow superstructures. Arslan et al. also used a spray process to grow highly oriented crystalline HKUST-1 MOFs on modified Au substrates [25].

We report a new method for the deposition of MOF films by cold-spraying colloidal ZIF-8 sol. The cold-spraying technique is a high-rate coating method in which particles are injected into a supersonic gas stream, created by the expansion of a compressed gas through a convergent-divergent De Laval nozzle. The particles, accelerated to supersonic velocities, possess sufficient kinetic energy to bond to the substrate upon impact. Other technical details of the cold-spraying apparatus have been discussed in earlier reports [26]. The cold-spraying technique utilizes the high kinetic impact energy of the high-velocity particles to promote strong bonding between the substrate and the particles. Herein, we demonstrate that the cold-spraying coating method is effective in successfully depositing ZIF-8 films that maintain the original crystal structure of the source nanoparticles. Furthermore, we observed the deposition of ZIF-8 films with (112)-oriented crystal structures in the presence of 20% dimethylformamide (DMF) in the colloidal sol. To the best of our knowledge, this is the first report on the deposition of oriented ZIF-8 films by supersonic spraying. This work provides new insight on the deposition of ZIF-8 films and the mechanical responses of the films to high-speed impact, and describes the tailoring of the crystallographic orientations and crystallinity of the deposited MOF films.

![Fig. 1. Schematic of the custom-built supersonic spray-coating system.](image-url)
2. Experimental

Crystalline ZIF-8 was synthesized by the microwave-irradiation method. Typically, 2-methylimidazole (663 mg, 8 mmol) and Zn(NO₃)₂·6H₂O (304 mg, 1 mmol) were mixed in a Teflon vessel with a 28 mL of methanol and then the solution mixture was reacted at 150 °C for 1 h. After cooled down to room temperature, the products were purified by centrifugation and then washed with methanol three times to remove unreacted reactants. Finally, the products were dried overnight below 100 °C in atmosphere.

The synthesized ZIF-8 powder with nanoparticles of 100–150 nm diameter was used. The films were deposited using a supersonic spray-coating system (also known as cold-spray method), shown schematically in Fig. 1. The system consists of a gas tank, gas heater, supersonic nozzle, ultrasonic liquid processor, syringe pump, and XY translation stage, configured as shown in Fig. 1, and as described in a previous paper [27]. In order to deposit the ZIF-8 films, a colloidal solution was prepared using 50 mL isopropanol (IPA), 10 mL N,N-dimethylformamide (DMF), 6 wt.% of nylon-6, and 1 g of ZIF-8 powder. Nylon was included to promote the adhesion of the ZIF-8 particles to the substrates. The DMF was added to the solution in order to enhance the dispersion of the ZIF-8 nanoparticles. A sonicator (Pronotech, South Korea) was used for 2 min to create the dispersion of ZIF-8. This solution was then pumped by a syringe pump (KDS LEGATO 100) towards the nozzle via the ultrasonic liquid processor (VCS134ATFT, Sonic & Materials, Inc., USA). The feed solution was discharged in an undifferentiated, supersonic air stream through the nozzle, which accelerated the sol toward the substrate; a uniform coating was generated by four cycles of supersonic particle deposition. The operating air pressure (P₀) varied from 2 to 7 bar and the heater temperature for the air was varied from 150 to 350 °C. The ZIF-8 films were coated on both copper and glass substrates with an average thickness of 20 μm (see Fig. S1). The ZIF-8 nanoparticles gained high kinetic energy by the hot compressed air blown through the supersonic nozzle, which yielded well-adhered compact ZIF-8 films on the substrates.

3. Results and discussion

The ZIF-8 films were deposited by supersonic spraying onto glass and copper substrates. Fig. 2 shows the X-ray diffraction (XRD) patterns of the ZIF-8 films deposited on copper substrates, recorded with an X-ray diffractometer (SmartLab, Rigaku). The XRD pattern of the raw ZIF-8 powder [12] (see inset Fig. 2) shows dominant Bragg peaks (2θ) at 7.31, 10.24, 12.65, 16.03, and 17.84°, corresponding to the respective crystallographic planes. However, the same ZIF-8 powder after deposition in the presence of DMF in sol shows a dominant peak at ~12.7°, assigned to the (112) plane, as shown in Fig. 2. A similar orientation was established in the film deposited on glass, as shown in the Supporting Information (Fig. S2). We reasoned that this change in crystal orientation is connected to the presence of occluded DMF in the sol; the possible mechanism responsible for this effect is elucidated below. In addition, we expect that the (112)-oriented ZIF-8 films are dense in nature because of the presence of DMF and compaction by impact pressure between the substrate and the particles during deposition. Recently Cookney et al. [13] reported a similar type of (112)-oriented ZIF-8 thin films deposited by dip-coating on silicon; the films were observed to be dense in terms of surface morphology and were evacuated to access the void space in ZIF-8.

In this study, the peak consistently appears at 2θ = 12.7° for the films deposited at 2 bar, 4 bar, and 5 bar. However, the intensity of the peaks decreases with increasing air pressure, which we attribute to the lattice strain in the compacted films accompanied by a gradual loss in long-range ordering (crystallinity). At ~7 bar, the sharp peak disappears, suggesting the amorphization of the ZIF-8 structure by porous framework collapse. Similar high-pressure amorphization of ZIF-8 has been reported by Chapman et al. [28] under hydrostatic compression and also observed through mechanical impacts from ball milling by Bennett et al. [29]. Notably, in the case of cold-spray coatings, the increase in air pressure from 2 to 7 bar increases the velocity of air, as well as that of the sol particles, from 310 to 400 m/s, thus increasing the impact pressure against the substrate. To estimate this effect, we solved the 1D isentropic equation; the relationship of temperature vs. velocity is shown in Fig. 3.

We previously reported a high-impact-pressure study on inorganic materials, describing the effect of impact pressure on the fracture and adhesion of the particles on the substrate [30]. High kinetic energy of the cold spray was acquired by converting the pressure and temperature of the upstream chamber through a De Laval nozzle. The pressures used here for the flow of particles are not very high, especially at 2–5 bar, but at sufficiently high air temperatures in the chamber (T ≥ 250 °C), the velocity of particles increases, which could generate high impact pressures. Thus, at increased air temperatures (T = 250 °C) and pressures from 2 to 7 bar, the velocity of the particles is expected to be ~500 m/s, which ultimately increases the impact pressure of the particles striking the substrate. This process leads to particle fracture and the destabilization of the ZIF-8 frameworks [15], causing the structural amorphization we observed at high pressures exceeding 7 bars (see Fig. 2).

Under the assumption of a 1D isentropic flow (inviscid and adiabatic), the exit velocity Vₑ of the air can be estimated using the equation below:

\[V_e = \sqrt{2c_p T_0 \left[1 - \frac{P_i}{P_0} \right]^{(γ-1)/γ}} \]

(1)

where \(c_p \) is the specific heat, \(T_0 \) and \(P_0 \) are the chamber temperature and pressure and \(P_i \) is the exit pressure, respectively. \(V_e \) was multiplied by a factor of 0.8 to estimate the particle velocity \(V_p \) (i.e., \(V_p = \sim 0.8V_e \)), based on the Stokes number computation. For the \(V_p \) estimation, one may find the two limiting cases of the Stokes number (Stk) based on the minimum and maximum particle sizes present within the supersonic gas stream. A blob of liquid of ~50 μm comprising numerous ZIF-8 particles is the maximum size present.

Fig. 2. Pressure-dependent XRD patterns of ZIF-8 films deposited on a copper substrate with air gas temperature of 250 °C. The inset shows the XRD pattern of the raw ZIF-8 powder.
when it is injected into the supersonic stream. This liquid blob becomes fragmented; eventually only the ZIF-8 primary particles remain before they strike the substrate, because all liquid has evaporated before reaching the substrate; this latter scenario provides the other limiting end case with a minimum size of ~0.1 μm. The Stokes numbers of these minimum-sized particles, defined as the ratio of particle response time (τp) to the surrounding flow characteristic time (τs), are fairly small (St < 2), in which case the particle velocity approaches the gas velocity; see Fig. 5 of Ref. [31]. Note that the gas exit velocity was estimated using Eq. (1) above with the chamber pressure and temperature of P0 = 2 bar and T0 = 250 °C, respectively. From this estimation, it is likely that the particles were accelerated to the gas velocity and retained sufficient momentum to be deposited onto the substrate with no evidence of waste or deflection from the substrate, which we confirmed experimentally. No wetting was observed at the substrate throughout the coating process, confirming the complete evaporation of the carrier liquids at the instant of particle impact. It is also possible that the presence of the bow-shock would hinder the adhesion of the particles on the substrate. However, such hindrance was not significant in our case, as we did not observe evidence of fragmented debris of the particles or wasted precursor in the coating area.

In order to confirm the effect of DMF in modifying the orientation of ZIF-8, as well as to study the effect of pressure, films were spray-deposited at different pressures with no DMF in the sol. The experimental process was similar to the aforementioned procedure, except that DMF was excluded from the solution. The ZIF-8 films were deposited on copper substrates. The XRD patterns of the non-DMF films deposited at different pressures are presented in Fig. 4. The peaks corresponding to the planes (011), (002), (112), (013), (022), and (222) are clearly observed in all films, similar to the pattern from ZIF-8 powder, albeit with lower intensities. Interestingly, no preferential film orientation is observed when no DMF is used in spraying. However, similar to the case using DMF, the amorphization of films occurs at the air pressure of 7 bar. From this result, it is clear that the presence of DMF in sol is significant in generating the orientation of the spray-deposited ZIF-8 films.

We have postulated that the presence of high-boiling-point occluded molecules in ZIF-8 pores (herein, DMF with a boiling point of ~150 °C) could mechanically stabilize the flexible sodalite framework structure [9], thereby reducing the likelihood of impact-induced amorphization. We tested this hypothesis by replacing DMF with two other high-boiling-point solvents: dimethylacetamide (DMA, boiling point ~165 °C) and dimethylsulfoxide (DMSO, ~189 °C). Significantly, both experiments result in predominant (112) diffraction peaks, reminiscent of that obtained using DMF (see Fig. 5). In contrast, we reasoned that the low-boiling-point IPA (~83 °C) without DMF, as in Fig. 4, would be rapidly volatilized in flight by the high temperature of the air stream, meaning that IPA would not be available to mechanically stabilize the ZIF-8 pores during impact; thus, relatively greater amorphization was induced, as compared to the case with DMF from Fig. 2. While guest-induced hydrostatic stabilization against MOF structural collapse has been reported recently using a few common solvents [32,33], this phenomenon has not yet been observed under a high-strain-rate dynamic impact scenario, as demonstrated in this work (see Table 1).

To elucidate the existence of the preferred (112) film orientation, examination of the detailed crystal configuration of the ZIF-8 unit cell is necessary. Fig. 6 shows that the (112)-oriented planes are formed by the intersection of four nitrogen atoms connected to four different tetrahedral ZnN4 coordination sites in each sodalite cage of ZIF-8, indicating that these are effectively cleavage planes susceptible to crystallographic fracture triggered by (sliding) shear...
stresses [9] from high-energy impact. In fact, {112}-oriented planes are prevalent in ZIF-8; altogether, there are 21 such planes per unit cell (Fig. 6). From this analysis, we may assume that the probability of slicing through one of such cleavage planes is equal to that of crystal fracture; this selective rupturing mechanism could yield the major intensity in the {112} preferred orientation observed in the XRD data shown in Fig. 2.

The Raman spectra of ZIF-8 films deposited at different pressures, showing dominant intense bands corresponding to the vibrations of methyl groups and imidazole rings, are presented in Fig. 7. The Raman spectra presented here are from films deposited with DMF in sol. Bands are observed at 178 and 273 cm\(^{-1}\), 686 cm\(^{-1}\), 1143 cm\(^{-1}\), and 1458 cm\(^{-1}\), corresponding to Zn–N stretching, imidazole ring vibration, C5–N stretching, and methyl

\[
\begin{array}{cccccccc}
\hline
\text{Wavenumber [cm}^{-1}] & \text{Band assignment} \\
\hline
178 & \text{Zn–N} \\
273 & \text{Zn–N} \\
686 & \text{Imidazole ring} \\
1143 & \text{C5–N} \\
1186 & \text{C–N} \\
1458 & \text{C–H wagging} \\
1508 & \text{C4–C5} \\
2915 & \text{C–H (methyl)} \\
3115 & \text{C–H (Ar)} \\
3134 & \text{C–H (Ar)} \\
\end{array}
\]

Fig. 6. Potential cleavage planes identified in the cubic ZIF-8 unit cell (one sodalite cage; the nanosized pore is located in the middle), belonging to the {112}-oriented family of lattice planes. Examples depicted here are (a) (112), (b) (121), and (c) (211); not shown are the other 18 planes in this family such as (−112), (−121), (−211), etc. The purple tetrahedra represent \(\text{ZnN}_4\) coordination sites. The circle markers designate weak points at the vertices of \(\text{ZnN}_4\) sites susceptible to rupture by shear stresses. Color code: purple = zinc, gray = carbon, blue = nitrogen, and white = hydrogen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Pressure-dependent Raman spectra of ZIF-8 films with DMF at 250 °C air gas temperature.

Fig. 8. Pressure-dependent Raman spectra without DMF in solution.
bending, respectively. A comparison of the ZIF-8 Raman data with results reported by Kumari et al. [34] shows that the peaks agree well with the literature, which verifies that the coated films are indeed ZIF-8. The peak locations and respective band assignments are listed in Table 2. Ryder et al. [15] also reported similar vibrational frequencies of organic and Zn–N bonds in ZIF-8 using high-resolution inelastic neutron-scattering measurements. The Raman spectrum of ZIF-8 powder is also presented in Fig. 7. The Raman spectra of the films deposited at different gas pressures without DMF in sol are presented in Fig. 8, showing that all Raman bands remain similar without shifting. This Raman data confirm that the chemical structure of ZIF-8 in the absence and presence of DMF remains unchanged.

The morphologies of the ZIF-8 films were inspected by scanning electron microscopy (SEM). Fig. 9 shows the SEM images of the ZIF-8 films deposited on a copper substrate with DMF in sol. In Fig. 9 (a), a thin layer is observed, covering the ZIF-8 grains with a smooth surface of DMF residues. However, the surface texture is clearly roughened in the higher-pressure films in Fig. 9 (b) and (c), showing more violent fragmentation of the particles.
Polycrystalline ZIF-8 powder is transformed by cold-spraying deposition to (112)-oriented ZIF-8 films with guest-induced structural stabilization caused by occluded solvent molecules in the MOF pores (e.g., DMF, DMA, DMSO). This is the first attempt to deposit preferentially oriented and non-oriented MOF films by high-rate supersonic spraying. The deposition process of preferentially oriented films presents a new strategy for manipulating the crystal structures and physical properties of ZIF-8 films. The preparation of amorphous ZIF films by high-rate supersonic spraying is also of significant interest in the production of chemically functionalizable hybrid glass materials. Finally, the versatility and scalability of the proposed manufacturing approach indicate that it may be easily adapted to fabricate large-scale ZIF-8 films for practical and commercial applications. Certainly, the efficacy of the supersonic spraying methodology bodes well for follow-on studies to ascertain the performance of the deposited films for specific MOF applications.

4. Conclusion

The deposition process of preferentially oriented films presents a new strategy for manipulating the crystal structures and physical properties of ZIF-8 films. The preparation of amorphous ZIF films by high-rate supersonic spraying is also of significant interest in the production of chemically functionalizable hybrid glass materials. Finally, the versatility and scalability of the proposed manufacturing approach indicate that it may be easily adapted to fabricate large-scale ZIF-8 films for practical and commercial applications. Certainly, the efficacy of the supersonic spraying methodology bodes well for follow-on studies to ascertain the performance of the deposited films for specific MOF applications.

Acknowledgements

This research was primarily supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078879). This research was also supported by the Commercializations Promotion Agency for R&D Outcomes (COMP) funded by the Ministry of Science, ICT and Future Planning (MISP) and KETEP-20133030010890. The project was partially supported by King Saud University, Vice Deanship of Research Chairs.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cej.2016.03.029.

